
Rongen J, Geradts Z (2017) Extraction and Forensic Analysis of  Artifacts on Wearables. Int J Forensic Sci Pathol. 5(1), 312-318.

312

 OPEN ACCESS                                                                                                                                                                                     http://scidoc.org/IJFP.php

International Journal of  Forensic Science & Pathology (IJFP)
ISSN 2332-287X

 Extraction and Forensic Analysis of  Artifacts on Wearables
             Research Article

Rongen J1, Geradts Z1,2*

1 Netherlands Forensic Institute, Laan van Ypenburg 6, The Hague, Netherlands.
2 University of  Amsterdam, Spui 21, Amsterdam, Netherlands.

Introduction

Google Glass was one of  Google’s newest additions to a class of  
devices often referred to as “wearables” [12]. These devices can 
be of  great value in digital research, considering they might be on 
a user for a long time. In many cases, they also generate a large 
amount of  data. This is no different for Google Glass, as a large 
part of  the user interface is dedicated to social media functions, 
which have a great probability of  creating valuable digital traces. 

A problem however is the lack of  knowledge about the device. It 
was developed by Google X, Google’s semi-secret research facil-
ity, leading to very little documentation about the inner workings 
of  the devices. This might pose a problem when imaging the de-
vice or interpreting results from the extracted image.

Materials and Methods

This section can be divided in 2 subsections, namely the tools and 
methods used for the imaging of  the device and the ones used for 
analyzing the extracted data. A good start when contemplating 
the extraction of  data can be found in the NIST Guidelines for 
mobile device forensics [1].

Previous work

There has already been some research of  a forensic nature into 
Google Glass, some results of  which are used in this research. 
The main sources of  this research include the work of  Julie De-
sautels’ “Google Glass Timeline Forensics” [2] and the “Com-
puter and Digital Forensics Blog” [3].

Imaging

Extraction of  data from the Google Glass can then again be 
split in two major methods, namely extraction via software-based 
methods and extraction via hardware-based methods.

Software

When following the software route, a couple of  methods and 
their associated tools were used:

•	 Standard Linux command line tools, with addition of  The 
Sleuth Kit and the Android Debug Bridge. These tools were 
used in several different methods, mainly the method of  
dumping the eMMC chip over the Android Debug Bridge 
via the dd binary.

*Corresponding Author: 
 Zeno Geradts,
 Netherlands Forensic Institute, Laan van Ypenburg 6, The Hague 2497GB, Netherlands.
	Email:	z.geradts@nfi.minvenj.nl
 
 Received: December 30, 2016
 Accepted: January 23, 2017
 Published: January 25, 2017

 Citation: Rongen J, Geradts Z (2017) Extraction and Forensic Analysis of  Artifacts on Wearables. Int J Forensic Sci Pathol. 5(1), 312-318. 
 doi: http://dx.doi.org/10.19070/2332-287X-1700070

 Copyright: Geradts Z© 2017. This is an open-access article distributed under the terms of  the Creative Commons Attribution License, which permits unrestricted use, distribution and 
reproduction in any medium, provided the original author and source are credited.

Abstract

Wearables are an increasingly big item in mobile forensics, in large part due to the ever increasing popularity of  social media. 
A device that falls into this category is Google Glass. A big part of  the Google Glass interface is dedicated to social media 
functions. A side-effect of  these functions is that in many cases a lot of  data is generated that is interesting for forensic 
research. Therefore, it is imperative that more research is done into these types of  devices.

This paper will focus on extracting data from Google Glass and the different possible ways of  extraction. Following this, 
the extracted data will be analyzed for any possible artifacts that were left behind from normal use. 

Keywords: Google; Glass; Mobile Forensics; Android; Glassware.

http://dx.doi.org/10.19070/2332-287X-1700070


Rongen J, Geradts Z (2017) Extraction and Forensic Analysis of  Artifacts on Wearables. Int J Forensic Sci Pathol. 5(1), 312-318.

313

 OPEN ACCESS                                                                                                                                                                                     http://scidoc.org/IJFP.php

•	 The Shattered Google Glass Forensic Tool [4]: a python 
script	 made	 specifically	 for	 creating	 a	 logical	 image	 of 	 a	
Google Glass and dumping all available information from 
the dumpsys tool to get information of  system services.

•	 Android Debug Bridge Backup: a method built-in to the An-
droid operating system to make backups of  the data on a de-
vice running Android. This can be used to generate a partial 
logical image of  a device.

Hardware

For imaging via hardware based methods, three methods were 
attempted:

•	 The “5-Wire method”: this method gets its name from the 
fact	that	only	five	wires	are	needed	for	the	extraction	of 	data	
from the eMMC chip. In this method, an attempt is made to 
find	the	five	necessary	lines	on	the	circuit	board	in	an	acces-
sible place and tap into them. The necessary lines for this are:

•	 Command
•	 Clock
•	 VDD
•	 VSS
•	 Data0

If  these lines are found and it is possible to tap into them, the next 
step is to put the eMMC into 1-bit bus Single Data Rate transmis-
sion mode. The data from the eMMC can then be read out using 
only one data line(data0) [5].

•	 The NFI Memory Toolkit II (MTKII): The NFI Memory 
Toolkit is a combination of  hardware and software. The 
hardware makes a physical connection, generates signals and 
supplies power to a memory chip, while the software runs the 
necessary command-sets to access data in the various types 
of  memory chips [6, 13].

•	 For this method, the eMMC memory will be extracted from 
the mainboard of  the Google Glass (chip-off) and the data it 
contains will be extracted from it using the MTKII.

•	 JTAG, a method for testing of  the CPU and its peripherals. 
It is inherent to the main goal of  this method that the user 
has access to the memory and storage peripherals normally 

available to the main processing unit.

Analysis of  extracted data

For the analysis of  extracted data, a basic installation of  Ubuntu 
14.04 LTS x64 is used. A couple of  tools need to be added to the 
default installation however, these include: 

•	 SQLite DB Browser, a graphical browser for SQLite data-
bases.

•	 The Sleuth Kit, for analyzing the structure of  extracted im-
ages	(e.g.	used	filesystem,	consistency)

•	 Android Debug Bridge, for easy communication with the 
Google Glass.

•	 Android Backup Extractor [7], for extracting backups made 
with ADB.

Theory

Scope

Seeing as there was a limited time available for this research, a 
scope had to be established. Things that fall outside the scope of  
this project include:

•	 Searching for new exploits in the Android operating system
•	 Analysis of  traces outside of  the internal storage (e.g. cloud-

based, like Google+, Google Hangouts etc.)
•	 Developing new tools for extraction of  data from Google 

Glass

Extraction of  data

Extraction of  data was attempted using a collection of  different 
methods. The methods can be divided into a number of  catego-
ries,	with	associated	subcategories.	The	model	used	 for	classifi-
cation of  data extraction methods is visible in Figure 1. Branch 
Diagram of  Data Extraction Methods.

Logical

Shattered: The execution of  this method was as simple as run-
ning the python script of  which the tool consisted. The script 

Figure 1. Branch Diagram of  Data Extraction Methods.

Data 
Extraction

Software

Hardware

Unrooted

Rooted

JTAG

5-Wire
Method

Chip-off
(MTKII)

Logical

Physical

Logical

Physical

Shattered

ADB
Backup

dd over
ADB

Shattered

ADB
Backup

dd over
ADB



Rongen J, Geradts Z (2017) Extraction and Forensic Analysis of  Artifacts on Wearables. Int J Forensic Sci Pathol. 5(1), 312-318.

314

 OPEN ACCESS                                                                                                                                                                                     http://scidoc.org/IJFP.php

then asks for a case name, which it uses to generate a directory 
named after the case and the date and time of  the creation. The 
results of  this method are quite extensive when it comes to infor-
mation about the running system. A lot of  information is avail-
able with regards to running services and the status of  hardware 
and peripherals.

Looking at the collected data from the internal storage however, 
the	results	are	quite	disappointing.	Most	files	available	on	the	em-
ulated	internal	memory	card	are	available,	as	are	some	of 	the	files	
from the /sys, /res and /acct directory. Most of  the latter have 
low forensic value however, as they do not contain user related 
traces for the most part and only provide data about the running 
system, only useful for live investigations.

ADB Backup: This is a standardized method for creating par-
tial backups of  Android devices, executed by running ADB bi-
nary with the following switches: adb backup -apk -shared -all 
–f  GlassNFI.ab. While this would normally create an Android 
backup of  the device named “GlassNFI.ab”, there was the prob-
lem	of 	confirming	the	backup	via	the	dialog	on	the	device.
 
The	trouble	with	confirming	the	backup	on	the	Google	Glass	it-
self, was that the Google Glass does not use the standard Android 
user	interface.	Rather	it	uses	the	“timeline”	interface,	specifically	
created for the Google Glass. The normal Android user interface 
does seem to be present in the device however, as it does popup 
the	confirmation	dialog	for	ADB	Backup	in	this	case.	The	prob-
lem however is that the Google Glass is not a touchscreen device. 
This means that, while it does have a touchpad, this can’t be used 
for user input in the same way a touchscreen is used. As a result 
of 	this,	there	was	no	way	to	press	the	“Confirm”	button	on	the	
dialog.

One possible solution to this is connecting the Google Glass to 
a bluetooth keyboard. The only problem with this method, was 
that Google Glass only natively supports bluetooth connections 
to mobile phones using the MyGlass [8] application.

Keyboard input can however also be simulated using ADB in 
combination with the input binary. Using this method, the backup 
was	confirmed	and	created.	

The created backup was then converted to a tar archive, using An-
droid Debug Extractor [7]. After unpacking this tar archive, the 
contents of  the backup were visible. The backup contained data 
from 2 directories, namely /storage/emulated/0/, which is where 
the emulated internal memory card is mounted and /data/data, 
where application data is normally stored. The data found from 
these two directories is unfortunately not a complete backup, as 
the /apps directory in the backup where the /data/data content 
is stored, is missing all data from the system applications. The 
/shared/0 folder inside the backup, where the /storage/emu-
lated/0/ content is normally housed, also misses the “Android” 
folder, where external application data is normally stored.

Physical

dd over ADB:	This	method	failed	at	the	first	step	of 	execution,	
which is to use the dd binary to read all data from the /dev/
block/mmcblk0 node.

To read from this node, elevated privileges are needed. However, 
since this method is used in an unrooted environment, these privi-
leges are not available. For further information of  the workings 
of  this method, see the equally named section further on, under 
"Software - Rooted".

Gaining access to the root account: To further continue the 
search for data extraction methods, elevated privileges are needed. 
Seeing as this is a consumer device, these privileges are not grant-
ed by default. In order to access these privileges, access to the root 
account of  the device is required.

Three methods were attempted to gain access to the root account, 
they are as follows:

•	 ADB Backup and symlink traversal [9], a method in which a 
malicious	backup	file	is	crafted	and	restored	via	ADB.

•	 Towelroot , an exploit based on CVE-2014-3153 which ex-
ploits a bug in the Linux kernel via the futex_requeue func-
tion, to gain elevated privileges.

•	 Google Dev Images [10],	flashable	developer	images	distrib-
uted by Google for gaining root access on a Google Glass.

ADB Backup and symlink traversal: This method relies on 
backing up an application with access to the root or system ac-
count, setting up a small bash script that relies on a race condition 
to	create	a	symlink	and	restoring	a	specially	crafted	backup	file	via	
ADB. When the method was successful, the original backup can 
be restored.

When trying to execute this method on the version of  the Google 
Glass software used for this research (XE22), it seemed that this 
method did not work anymore. The reason for this, is that in this 
version of  the software, it was impossible to backup and restore 
applications with access to the root or system account. Another 
issue was that the Android version used for this research had an 
SELinux enabled kernel, which meant that if  this method had 
worked, the resulting privilege escalation would immediately be 
undone.

Towelroot: After downloading the apk and running the appli-
cation via ADB commands, no root access was available. After 
further research the cause seemed to be that the used version of  
the Google Glass software(XE22) used the xrx13b kernel, while 
the futex_requeue bug was patched in an earlier kernel, namely 
xrv85b [11].

Google Dev Images: While these images provide access to the 
root	account	by	easily	flashing	the	bootloader	with	the	fastboot	
utility, there is one big disadvantage of  using these images. When 
flashing	these	images,	the	entire	user	data	partition	is	erased.	This	
makes them useless for a real forensic investigation, but not for 
this	 research.	After	flashing	 the	 image	and	executing	a	su	com-
mand	over	ADB,	access	to	the	root	account	was	confirmed.

Software – Rooted

Logical

Logical: Contrary to the last time, after running the shattered 
script with root privileges, a full logical image of  the internal 
filesystem	was	generated.	This	means	that	when	access	to	the	root	



Rongen J, Geradts Z (2017) Extraction and Forensic Analysis of  Artifacts on Wearables. Int J Forensic Sci Pathol. 5(1), 312-318.

315

 OPEN ACCESS                                                                                                                                                                                     http://scidoc.org/IJFP.php

account is a possibility, the shattered script can be of  substantial 
value in a forensic investigation.

ADB Backup: As expected, the results of  an ADB backup are 
exactly the same with root access as without root access.

Physical

dd over ADB: Now that elevated privileges are available, the dd 
binary can be used to read from the /dev/block/mmcblk0 node. 
The only issue that remains is piping the output to a usable loca-
tion. This location cannot be on the device itself, as the resulting 
file	will	be	exactly	as	large	as	the	internal	flash	chip.	The	solution	
to this problem is to pipe the output of  the dd binary over ADB. 
Another problem that arose, is that ADB adds windows style line 
endings to the end of  each line. These line endings ended up in 
the	image,	rendering	it	unusable.	The	solution	to	this	was	to	first	
encode all the data with the base64 binary, and decode it at the 
receiving side. A schematic representation of  the used method 
can be found in Figure 2.

This method yields a fully usable physical image of  the internal 
flash	memory.	However,	because	this	image	has	been	made	with	
mounted	partitions,	the	filesystems	contained	in	it	are	marked	as	
“dirty”. They can however still be mounted by using the noload option, 
which	mounts	the	filesystem	without	loading	the	associated	jour-
nal.

Hardware

JTAG: For using the JTAG method, a JTAG header on the 
mainboard is needed. This is normally a 10 or 20 pin header on 
the mainboard of  the device. After carefully disassembling the 
Google Glass and examining the mainboard for these headers or 
footprints of  these types of  headers. Although a lot of  test pads 
and via’s were available at the surface of  the motherboard of  the 
device, none seemed to indicate the presence of  a JTAG header. 
As such, it is not possible to use this method.

5-Wire Method:	The	first	step	in	using	this	method	is	finding	a	

place	on	the	motherboard	were	the	five	necessary	lines	are	acces-
sible for tapping into. To achieve this, the datasheet of  the used 
eMMC was checked for the location of  the contacts associated 
with these lines. Following that, pictures of  the front and back of  
the mainboard were taken.

From these pictures a semi-transparent overlay of  the front of  
the board (containing the eMMC) over the back of  the board was 
made. This overlay is visible in Figure 3.

Using this overlay, possible locations for the needed lines can be 
seen on the backside of  the board. From this overlay, an immedi-
ate	 problem	 can	be	 determined.	The	datasheet	 clearly	 specifies	
that the needed lines are located on the upper and lower left side 
of  the eMMC, which are both blocked by the square gray chip 
containing the WiFi and bluetooth hardware. On the topside of  
the board, the chip marked Elpida (Figure 3) contains the RAM 
and is stacked on top of  the main processor. 

Combining this knowledge with the fact the mainboard is multi-
layered, it is very probable that the needed lines run through layers 
on the inside of  the board, between two ground planes. This is 
a technique commonly used to minimize outside noise to these 
lines and keep them as short as possible.

Chip-off: In this method a hot air rework station is utilized to 
remove the memory chip from the mainboard. The extracted 
memory chip is then inserted into the NFI Memory Toolkit II to 
extract the data and make a physical image of  the chip. 

Normally, when this is correctly executed, the chip can be placed 
back on the main board and the device is usable again. In this case 
however, all chips were sealed to the mainboard with resin. Luck-
ily, this did not interfere with the extraction of  the memory chip 
from the mainboard, but did damage the solder balls connecting 
the CPU and the RAM, rendering the device unusable. Given that 
all data was extracted via different methods, this did not interfere 
with the progress of  this research.

Analysis of  extracted data: Since there was a waiting period 

Figure 2. Data Stream for Extraction via dd over ADB.

Google 
Glass

ADB

dd output

Image

dd 
command

Base 64

Decodebase 64

ADB

Stdout

Figure 3. Semi-Transparent Overlay of  the Front Over the Back of  the Mainboard.



Rongen J, Geradts Z (2017) Extraction and Forensic Analysis of  Artifacts on Wearables. Int J Forensic Sci Pathol. 5(1), 312-318.

316

 OPEN ACCESS                                                                                                                                                                                     http://scidoc.org/IJFP.php

for the chip-off  method, the following research was based on the 
image acquired with the dd over ADB method. The result of  this 
analysis	was	verified	with	the	images	acquired	from	the	chip-off 	
method, to verify the conclusions of  this research.

Image structure: The	first	step	in	researching	the	extracted	data,	
is determining the structure of  the acquired image. Using fdisk, 
the partitions in the image can be listed.

Taking into account that this research is bound to a limited 
amount of  time, a scope of  partitions had to be established. Be-
cause this research focuses on user-generated artifacts, partitions 
1 to 7 are excluded from further research, seeing as they do not 
contain	 a	writable	filesystem	and	 are	not	 accessible	 to	 the	user	
during normal operation.

This leaves 3 partitions, 8, 9, and 10. Partition 10 (/system) does 
contain	 a	 known	 and	 writable	 filesystem,	 however	 it	 is	 always	
mounted read-only in normal operation. This means the user can-
not write to this partition and it will most likely contain little user 
artifacts. 

This	can	be	verified	by	downloading	a	factory	system	image	[10], 
unpacking it and comparing (diff) it against the system partition 
in the image acquired from the device. Based on this information, 
the decision was made to exclude this partition from further re-
search. The /cache partition seems to be an interesting place for 
forensic	artifacts	at	first.	Looking	closer	however,	it	seems	to	only	
have a couple of  uses:

•	 Temporary storage for OTA(over-the-air) updates
•	 Temporary storage for Play-store downloads
•	 Logs from the recovery mode
•	 The “lost+found” directory which contains artifacts from 

partition recovery.

Since the chance of  discovering new artifacts from further re-
search seems unlikely, this partition will be excluded from further 
research.

This leaves only one partition for further investigation, the /user-
data partition, which is also by far the biggest partition.

Results

The search for artifacts in this partition was split into four catego-

ries, depending on the type of  data:

•	 Databases
•	 Log	files
•	 Cache
•	 Media

Databases

Given	that	Google	Glass	runs	on	a	slightly	modified	version	of 	
Android 4.4.4, a lot of  databases were expected in this investiga-
tion. This proved to be true, and as such only the most important 
Glass-specific	databases	will	be	mentioned	in	this	article.

One	of 	the	first	things	that	can	be	remarked,	is	the	naming	sche-
ma for Google’s own “Glassware”. These applications all shared 
the	 same	 prefix,	 namely	 “com.google.glass”.	 Another	 thing	 to	
note is that all databases found were SQLite 3 databases.

One of  the most important databases is timeline.db, found at /
data/data/com.google.glass.sync/databases/timeline.db. To un-
derstand what’s contained in this database, a little more informa-
tion about the user interface of  the Google Glass is needed. This 
user interface is different from the normal Android launchers. It 
is built up as a timeline, where for each event (eg. taking a picture, 
receiving a text message and so on) a new “card” is added to the 
timeline. The information contained in these cards is stored in the 
timeline.db and it describes every event extensively.

Another important database is found at /data/data/com.google.
glass.home/databases/entity.db, which stores all saved contacts, 
groups and associated metadata. This metadata includes the last 
action performed with this contact and the amount of  times 
something was “shared” with it.

In	timeline.db	and	other	Glass-specific	databases,	events	are	cou-
pled with api numbers, rather than application names. The /data/
data/com.google.glass.boutique/databases/ boutique.db, can be 
used to derive application names from api numbers. The records 
in the glassware table of  this database contain the api number 
and the associated application name, making it possible to link 
the events in the timeline.db to a certain application. Caution has 
to be taken however, as the api numbers are stored as unsigned 
64-bit integers. 

The /data/data/com.google.glass.camera/databases/compan-

Table 1: Partitions in Extracted Image.

Number Start Size Filesystem Name
1 131kB 131kB xloader msftdata
2 262kB 262kB bootloader msftdata
3 524kB 524kB fpga msftdata
4 1049kB 262kB bootconfig msftdata
5 1311kB 262kB misc msftdata
6 1573kB 8389kB recovery msftdata
7 9961kB 8389kB boot msftdata
8 18.4MB 1074MB ext4 system
9 1092MB 805MB ext4 cache
10 1897MB 13.9GB ext4 userdata



Rongen J, Geradts Z (2017) Extraction and Forensic Analysis of  Artifacts on Wearables. Int J Forensic Sci Pathol. 5(1), 312-318.

317

 OPEN ACCESS                                                                                                                                                                                     http://scidoc.org/IJFP.php

ion_photo_sync database, can be of  forensic importance. It 
contains all metadata pertaining to the syncing of  pictures with 
Google+. This might give some insight as to whether photos were 
deleted.

All data associated with custom “hotwords” (words that the glass 
can recognize in speech), such as contact and group names is 
stored phonetically in /data/data/com.google.glass.voice/data-
bases/prons.

Logfiles

All	logfiles	generated	by	the	system	(specific	app	logs	might	dif-
fer from this) are stored in two locations, namely /data/system/
dropbox and /data/media/0/logs. 

The /data/system/dropbox directory does not have any associa-
tion with Dropbox the cloud storage service, contrary to what the 
name might imply. This directory houses logs pertaining to bat-
tery discharge, dumpsys data, hardware events, kernel messages, 
boot messages and a couple other miscellaneous logs. 

The /data/media/0/logs directory contains all the syslogs, with 
data from the boot logs from the /data/system/dropbox direc-
tory, it can be determined to which session these syslogs belong.

Cache

Cache	files	can	be	found	in	a	couple	of 	places	on	the	Glass,	but	
by far the most extensive storage of  cache is /data/private-cache. 

It	contains	a	number	of 	different	cache	files:

•	 a_[UNIX Timestamp].call, which, as the extension suggests, 
contains data about phone calls made/received with the 
Glass.	The	structure	of 	these	files	is	visible	in	Figure	4.

The meaning of  the last two variable might seem obvious, but a 
consensus	of 	their	meaning	could	not	be	confirmed	by	reference	
testing, so they remain unknown.

•	 a_wear_[source_tag_id]_[type]_[UNIX Timestamp], cached 
files	originating	from	Android	Wear	interactions.

•	 gi_[api-nummer].	SMALL,	PNG	files	with	8	bytes	prefixed	
to the header, these are cached icons for Glassware applica-
tions.

•	 h_[timeline-id], cached Google search results, in the shape of  
HTML	files.	These	HTML	files	are	the	exact	pages	presented	
to the user as search results. The metadata from these results 
can be found in the timeline.db by searching the id in the 
filename.

•	 p_[32	alphanumerical	symbols]-640-640-0,	JPEG	files,	with	
differing content (and presumably origin). The two variables 
with a value of  “640” seem to indicate the resolution of  the 
images, this is however not the case for most images.

•	 The	last	variable	“0”	seems	to	indicate	if 	the	files	were	cre-
ated	locally	or	remotely.	In	all	cases	were	this	flag	is	“1”,	the	
resolution	in	the	first	two	variables	was	correct.

•	 ss_[UNIX Timestamp].png, screenshots in PNG format. 
The timestamp seems to indicate their creation time.

•	 Files	with	a	t_	prefix,	these	all	seem	to	be	thumbnails,	with	

Figure 4. Structure of  a .call file.

Figure 5. Header of  a cache file.

Figure 6. Footer of  a cache file.



Rongen J, Geradts Z (2017) Extraction and Forensic Analysis of  Artifacts on Wearables. Int J Forensic Sci Pathol. 5(1), 312-318.

318

 OPEN ACCESS                                                                                                                                                                                     http://scidoc.org/IJFP.php

the	respective	location	of 	the	original	image	in	their	filename	
in	multiple	ways	(path,	timeline	id,	filename	+extension)

Another forensically interesting location, when searching for 
cache	files	is	/data/data/[app_name]/app_webview/Cache.	This	
location is where cache from browsing is stored for apps that have 
a	WebView	 component.	These	files	 can	be	 very	 extensive,	 one	
example	of 	a	found	cache	file	is	seen	in	Figure	5.

Not only can the original hyperlink be extracted from the cache 
file,	the	full	jpeg	image	which	it	refers	is	present	in	the	cache	file.	
As can be seen in Figure 6, the footer seems to also contain the 
original HTTP headers.

The	last	important	cache	files	were	found	in	de	data	folder	of 	the	
com.google.glass.maps application, present at /data/media/0/
Android/data/com.google.glass.maps/cache/. In this location 
multiple	files	with	a	cache_	prefix	exist,	the	content	of 	these	files	
could	not	be	identified.

What	could	be	identified	however,	were	the	contents	of 	._speech_
nav_[#].wav	files	present	in	the	directory.	These	are	cached	spo-
ken	 navigation	 instructions,	 stored	 as	 regular	WAV	files.	These	
might	place	the	device	at	a	certain	location.	To	find	the	creation	
time	of 	these	files,	the	Android	MediaProvider	database	can	be	
checked, present at /data/data/com.android.providers.media/
databases/external.db.

Media

All media created with the internal camera can be found at /stor-
age/emulated/0/DCIM/Camera.	All	files	use	the	following	nam-
ing scheme: 

[Date(YYYYMMDD)]_[Time(HHMMSS)]_
[Time(ms)].[mp4/jpg]

There	 is	however,	another	place	where	some	media	files	reside,	
namely/data/data/com.google.glass.voice/recorded_audio. 
Stored in this location are spoken orders that were given to the 
Google Glass. Not all spoken orders are stored, this only seems to 
be the case for Google searches, navigation requests and dictated 
messages.	The	files	are	PCM	encoded	audio,	with	a	sample	rate	of 	
8kHz and signed 16-bit encoding.

The	naming	scheme	for	these	files	is	as	follows:

[type]_[date(YYYYMMDD)]_[time(HHMMSS)]_
[###]_8000.pcm

Type can be one of  three possible types:

•	 DICTATION, for dictated messages.
•	 NAVIGATION, for navigation requests.
•	 VOICE_SEARCH, for Google searches.

The meaning of  the 3 numbers “[###]” is unknown, but seems 
to be the milliseconds time.

Conclusion

As can be seen from the results, a lot of  forensically interest-
ing information can be retrieved from the Google Glass. A short 
summary of  this information:

•	 Pictures
•	 Video’s
•	 Contacts
•	 Social media activity
•	 Locations and destinations (navigation)
•	 Audio (including users voices and TTS cache)
•	 Interactions from various messaging platforms
•	 Sync information (eg. for Google+)
•	 Connected devices
•	 Android Wear interactions
•	 Web browsing behavior and resulting artifacts
•	 Search history including results
•	 Phone calls

This is a trend that is very visible in “wearables” and it is to be 
expected that these devices will play a growing role in future fo-
rensic research.
 
Focusing on this research however, the value of  this data will 
largely be dependent on the eventual consumer version of  Goog-
le Glass. Seeing as this research was conducted on the Explorer 
Edition	of 	Google	Glass,	the	final	product	may	be	quite	different.	
It is to be expected however that some of  the basic workings and 
principals of  this version will still apply to the consumer version, 
e.g. the abundance of  SQLite database, the timeline interface, the 
strong emphasis on social media functions etc.

A	basis	for	any	future	research	might	be	based	on	finding	exploits,	
to allow for better software-based imaging and perhaps memory 
extraction. This might aid in circumventing the possible crypto-
graphic functions in future Android versions.

References

[1]. Ayers Rick, Brothers Sam, Jansen Wayne (2014) NIST Special Publication 
800-101 Revision 1 - Guidelines on Mobile Device Forensics. National In-
stitute of Standards and Technology. 

[2]. Desautels Julie (2014) Google Glass Timeline Forensics. Blogspot. 
[3]. Champlain College. Computer & Digital Forensics blog, 2014. 
[4]. Bryce Chapin (2014) Shattered - Google Glass Acquisitition an Analysis 

Tool. GitHub. 
[5]. Zeroplus. eMMC Technology Application, June 2012. 
[6]. Netherlands Forensic Institute. NFI Memory Toolkit. April, 2011.
[7]. Elenkov Nikolay (2015) Android backup extractor. Github. 
[8]. Google Inc. MyGlass. Google Play Store. November, 2014.
[9]. Freeman Jay (2013) Exploiting a Bug in Google's Glass. 
[10]. Google. System and Kernel Downloads. Google Developers. May, 2015. 
[11]. Yick Kai (2014) android/kernel/omap/glass-omap-xrv85b. Google Git. 
[12]. Steve Watson, Ali Dehghantanha (2016) Digital forensics: the missing piece 

of the Internet of Things promise, Computer Fraud & Security. 2016(6): 
5-8. 

[13]. Marcel Breeuwsma, Martien de Jongh, Coert Klaver, Ronald van der Knijff, 
Mark Roeloffs (2007) Forensic Data Recovery from Flash Memory. Small 
Scale Digital Device Forensics J. 1(1): 124-132. 

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://smarterforensics.com/wp-content/uploads/2014/06/Google-Glass-Forensics.pdf
http://computerforensicsblog.champlain.edu/tag/google-glass/
https://github.com/chapinb/shattered
https://github.com/chapinb/shattered
http://www.zeroplus.com.tw/software_download/201207-eMMC_en.pdf
https://www.forensicinstitute.nl/products_and_services/forensic_products/nfi-memory-toolkit.aspx
https://github.com/nelenkov/android-backup-extractor
https://play.google.com/store/apps/details%3Fid%3Dcom.google.glass.companion
http://www.saurik.com/id/16
https://developers.google.com/glass/tools-downloads/system
https://android.googlesource.com/kernel/omap/%2B/glass-omap-xrv85b
http://usir.salford.ac.uk/39539/
http://usir.salford.ac.uk/39539/
http://usir.salford.ac.uk/39539/
http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi%3D10.1.1.444.4809%26rep%3Drep1%26type%3Dpdf
http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi%3D10.1.1.444.4809%26rep%3Drep1%26type%3Dpdf

	Abstract
	Keywords
	Introduction
	Materials and Methods
	Previous work
	Imaging
	Software
	Hardware
	Analysis of extracted data

	Theory
	Scope
	Extraction of data
	Logical
	Physical
	Software - Rooted

	Results
	Databases
	Logfiles
	Cache
	Media

	Conclusion
	References

