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Introduction

Morbidity and mortality has declined markedly with the advent 
and widespread use of  highly active antiretroviral therapy 
(HAART) for individuals with HIV infection [1, 2]. While the 
primary factor driving response to HAART is adherence, 

virologic response to HAART varies among adherent individuals 
and across populations [3]. Variation in genes that affect the 
absorption, distribution, metabolism, and excretion (ADME) of  
antiretrovirals (ARV) is thought to account for a portion of  the 
variability in responses to treatment [4-6].
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Abstract

Background: Clinical response to highly active antiretroviral therapy (HAART) varies among different populations. A por-
tion of  this variability may be due to variation in genes involved in the absorption, distribution, metabolism, and excretion 
(ADME) of  HAART.
Design: To identify genetic factors involved in virologic responses to HAART, 13 genes in ADME pathways were analyzed 
in a cohort of  HIV-infected women on HAART. A total of  569 HIV-positive participants from the Women’s Interagency 
HIV Study who initiated HAART from 1994-2012 and had genotype data were included in these analyses.
Methods: Admixture maximum likelihood burden testing was used to evaluate gene-level associations between common 
genetic variation and virologic response (achieving <80 viral copies/mL) to HAART overall and with specific drug classes.
Results: Six statistically significant (P<0.05) gene-level burden tests were observed with response to specific regimen types. 
CYP2B6, CYP2C19 and CYP2C9 were significantly associated with response to protease inhibitor (PI)-based regimens. 
CYP2C9, ADH1A and UGT1A1 were significantly associated with response to triple nucleoside reverse transcriptase 
inhibitor (NRTI) treatment.
Conclusions: Although no genome-wide associations with virologic response to HAART overall were detected in this 
cohort of  HIV-infected women, more statistically significant gene-level burden tests were observed than would be expected 
by chance (two and a half  expected, six observed). It is likely that variation in one of  the significant genes is associated with 
virologic response to certain HAART regimens. Further characterization of  the genes associated with response to PI-based 
treatment is warranted.
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Several studies among HIV-infected individuals have evaluated 
virologic and immunologic responses, as well as adverse effects 
such as hypersensitivity reactions, neurotoxicity, hepatotoxicity, 
and hyperbilirubinemia, in relationship to genetic polymorphisms 
[4, 5]. The genes which have been most frequently examined in 
pharmacogenetic association studies in HIV disease include those 
in the cytochrome p450 family (CYP), as well as the ABCB1 and 
UGT1A1 genes. The protein products of  these genes are reported 
to be involved in the metabolism and transport of  two ARV drug 
classes, non-nucleoside reverse transcriptase inhibitors (NNRTIs) 
and protease inhibitors (PIs) [6-8].

Numerous studies have evaluated CYP-based genetic determinants 
of  ARV exposure, but whether these polymorphisms translate to 
drug efficacy is controversial [9-19]. There has also been wide 
interest in the potential genetic influence of  ABCB1 on HAART 
responses owing to the crucial role of  P-glycoprotein (encoded by 
ABCB1) in the distribution and excretion of  PIs and NNRTIs [7, 
20-23]. However, variation in virologic responses to PI-containing 
regimens in HIV-infected patients who carry variant alleles of  two 
independent ABCB1 polymorphisms has not been consistently 
observed [20-23]. Enhanced immunologic recovery in carriers 
of  these ABCB1 variants has been observed in a recent analysis 
of  HIV infected Chinese persons treated with PI-containing 
regimens (n=275) [24]. Loss of  function alleles in the UGT1A1 
gene are associated with drug-related hyperbilirubinemia; carriers 
of  this variant treated with the PI atazanavir develop more 
severe hyperbilirubinemia, since atazanavir acts as an inhibitor to 
UGT1A1 [25].

Pregnane X receptor (NR1I2) is a nuclear receptor activated by 
several PIs, the nucleoside reverse transcriptase inhibitor (NRTI) 
abacavir, and the NNRTI efavirenz [26-28]. NR1I2 regulates the 
expression of  CYP3A4, CYP2B6, and ABCB1, which mediate 
the metabolism and transport of  several NNRTIs and PIs 
[26]. Pharmacokinetic associations between NR1I2 variation 
and the PI atazanavir have been reported [26-28]; however, 
pharmacogenetic associations with virologic response to HAART 
have not been explored. NRTIs are believed to be metabolized 
through alcohol dehydrogenase and the alcohol dehydrogenase 
1A gene (ADH1A) has been examined for gene-environment 
interactions in the metabolism of  abacavir and alcohol, although 
clinically significant interactions have not been identified [29].

Despite the potential for personalizing HAART regimens based 
on genetic predictors of  response, pharmacogenetic studies of  
HAART responses to date have not provided conclusive evidence 
of  associations. Previous pharmacogenetic studies in treated 
HIV-infected populations have focused on potential functional 
single nucelotide polymorphisms (SNPs) in genes that metabolize 
NNRTIs and PIs; the aim of  this study was to comprehensively 
investigate genetic variation in ADME genes in the Women’s 
Interagency HIV Study (WIHS), a prospective multi-site 
observational study of  multi-ethnic women infected with HIV, 
in relationship to virologic response. Associations between 
polymorphisms, derived from genomewide genotyping data, in 
CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, 
CYP2E1, CYP3A4, CYP3A5, ADH1A, ABCB1, UGT1A1, and 
NR1I2 and virologic response to an intial HAART regimen were 
explored.

Methods

Women’s Interagency HIV Study (WIHS) Study Design

The WIHS is a prospective study of  HIV-infected women and a 
comparison group of  HIV-uninfected women who were recruited 
in four phases from six sites across the U.S.: Bronx/Manhattan, 
New York; Brooklyn, New York; Washington, D.C.; Los Angeles, 
CA; San Francisco/Bay Area, CA; and Chicago, IL [30, 31]. Data 
in these analyses were restricted to the first two recruitment waves 
and include HIV-infected women only. The original recruitment 
phase was conducted in 1994-1995 and the second phase of  
recruitment was done in 2001-2002. The HIV-infected women 
in the WIHS are representative of  the racial/ethnic population 
of  HIV-infected women in the U.S. [30, 31]. A more detailed 
description of  the WIHS cohort has been published [30, 31].

Participants are seen for in-person visits every six months during 
which trained medical interviewers administer an extensive 
questionnaire, a clinical exam is performed, and biological samples 
are collected. Laboratory testing includes the measurement of  
HIV-1 viral loads (copies/ml) and CD4+ cell counts. At each 
biannual visit, detailed information on participants’ current 
treatment regimen, the ARV medications taken in the previous 
six months and medications used for comorbidities is obtained. 
Commencing at visit 9 (1998), data were collected on self-reported 
adherence to ARV medications as determined by a visual analog 
scale (100%, 95-99%, 75-95%, <75% over the past six months).

Inclusion Criteria for Current Analysis

HIV-infected women who consented to genetic studies, initiated 
a regimen of  three or more ARVs during study follow-up, 
maintained that regimen for a minimum of  two consecutive study 
visits, had HIV RNA measurements at the visit immediately prior 
to, the visit of, and the visit immediately after initiating a three or 
more drug regimen were eligible for this pharmacogenetic study. 
Participants who were ARV therapy experienced prior to initiating 
a three drug regimen were included in the study only if  at least two 
new ARV drugs were implemented as part of  the initiated three 
drug HAART regimen. From October 1994 to September 2012, 
1,307 WIHS participants initiated HAART. A total of  632 women 
were ineligible for this analysis: 138 had missing viral load data, 63 
had undetectable viral loads at all relevant visits, 262 discontinued 
HAART during the study period, six had substantial missing 
covariate data, and for 163 participants only one new ARV was 
added to an existing regimen to achieve the definition of  HAART. 
From a total of  675 eligible HAART initiators, 51 women were 
excluded because their treatment regimen did not fall within one 
of  the three treatment categories (NRTI-, NNRTI-, and PI-based 
regimens) investigated here and 55 women were excluded due 
to missing genotype data, leaving a final analytic dataset of  569 
WIHS participants.

Outcome

HIV viral load levels were quantified with a nucleic acid sequence 
based amplification assay with a lower limit of  quantification of  
80 copies/ml. A positive virologic response (“responders”) was 
defined as achievement of  an undetectable viral load at the visit 
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during which the HAART regimen was first reported or at the visit 
subsequent to it, which corresponds to a maximum of  54 weeks 
of  treatment. Participants not achieving an undetectable viral load 
at the visit of  first reported HAART regimen use (corresponding 
to the previous six months) or the subsequent visit were classified 
as “non-responders”.

Genotyping

A subset of  13 genes was selected from whole-genome 
genotyping data generated from a cohort-wide GWAS utilizing 
the Omni Human 2.5M SNP Array (Illumina, San Diego CA). 
Genotypes for SNPs in genes involved in ADME pathways (e.g. 
CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, 
CYP2E1, CYP3A4, CYP3A5, ADH1A, ABCB1, UGT1A1, and 
NR1I2) were extracted for participants eligible for this study. 
Genotype imputation was performed using IMPUTE2, with 
imputed genotypes generated by comparing our GWAS SNP data 
for each gene region with reference haplotype data from the 1000 
Genomes Phase 1 variant set release (version 3). 90 Markov chain 
Monte Carlo iterations were used in the imputation process. Only 
genotypes with an imputation r2 of  0.50 or higher are included in 
the analysis. Coverage for each of  the gene regions was calculated 
in each racial group by calculating pairwise r2 between our 
genotyped and imputed (imputation r2 ≥ 0.5 or greater, MAF ≥ 
0.05) SNPs and every 1000 Genomes SNP in the region (MAF ≥ 
0.05) using the 1000 Genomes samples of  each respective racial 
group. SNPs that had an r2 of  0.95 or greater with our genotyped 
and imputed SNPs were considered "covered," and the proportion 
of  SNPs covered in each region was calculated.

Covariates

Genetic ancestry for the entire cohort was quantified by 
performing principal components analysis on ancestry informative 
markers included on the genome-wide panel. Genetic ancestry 
principal components (PC) covariates were used to control for 
population stratification in association models. Adherence data 
for this analysis were assessed at the visit at which the participant 
achieved an undetectable viral load (visit of  HAART initiation or 
post-HAART initiation) since the adherence variable at this visit 
reflects HAART adherence in the six months preceding outcome 
ascertainment. Adherence data for non-responders was taken at 
the study endpoint, which was defined as the visit immediately 
after the HAART initiation visit. For modeling purposes, 
adherence was dichotomized as ≥ 95% or < 95% adherent. Type 
of  HAART regimen used by the participants was categorized as 
dual NRTI/PI, dual NRTI/NNRTI, or ≥ 3 NRTIs.

Statistical Analysis

The analysis includes women who self-identified as African-
American, Hispanic, or Non-Hispanic White. Logistic regression 
was used to test associations between each SNP and achievement of  
an undetectable viral load. Genotypes were modeled as an ordinal 
variable, where common allele homozygotes, heterozygotes and 
minor allele homozygotes were coded as 0, 1, and 2, respectively.

Adherence, pre-HAART viral load and nadir CD4+ count prior 
to initiation were evaluated as potential confounders. Ultimately, 
since SNPs showed no association with self-reported adherence, 

pre-HAART viral load or nadir CD4+ cell counts, these variables 
were not included in the final model. Analyses were performed with 
adjustment for the top nine genetic ancestry PCs. Stratification on 
self-reported race/ethnicity did not affect the results.

There is evidence that ARV drug classes vary in their affinity for 
particular enzymes, and as such, the analyses were carried out with 
all regimens combined as well as separately by triple NRTI-alone 
regimens, NNRTI-containing or PI-containing regimens.

Given the lack of  independence among our SNPs, an admixture 
maximum likelihood (AML) burden test was employed to evaluate 
whether a greater set of  nominal associations per gene were 
observed than would be expected under the null distribution. 
Essentially, the AML method postulates that a given proportion 
of  SNPs (α) within a set of  SNPs is associated with the outcome 
and that the magnitude of  each associated SNP’s effect will fall 
on a non-central χ2 distribution with non-centrality parameter η, 
a measure closely related to that SNP’s contribution to the genetic 
variance of  the outcome variable. The α and η parameters are 
estimated using a pseudo-maximum likelihood method [32]. This 
burden test was run using the AMLcalc program (http://ccge.
medschl.cam.ac.uk/software/aml) with 1000 simulations; and the 
maximum proportion of  associated SNPs was set to 0.2 on the 
genotyped and imputed data. We also adjusted for the first nine 
ancestry principal components. A total of  52 burden tests were 
run; comprising four HAART analytic groups (all regimens and 
each of  the three regimen types) with each of  the 13 genes.

Results

Table 1 summarizes the characteristics of  HAART initiators 
from October, 1994 to September 2012 in the WIHS by virologic 
responder status. Of  the 569 women included in the analysis, 
59% were responders (n=335). Among the 313 (55%) women for 
whom self-reported adherence data were available, 12.1% of  the 
responders reported <95% adherence compared to 28.3% of  the 
non-responders.

The 13 ADME genes evaluated in this analysis are shown in Table 
2. The percentage of  the genome covered in these regions by 
the genotyped and imputed SNPs by racial/ethnic group ranged 
from 17% to 100%. CYP2A6 and CYP3A5 were poorly covered 
in all of  the racial/ethnic groups. Although the genotyping array 
used in this project was designed to provide good coverage for 
non-Whites, only six of  the 13 genes were covered at 90% or 
higher for African-Americans compared to 10 and nine genes, 
respectively for Whites and Hispanics.

When considering the three types of  HAART regimens (triple 
NRTIs, dual NRTI/PI, dual NRTI/NNRTI), individual 
associations at p<0.05 were observed in all 13 genes with 
virologic response (Table 3), but none of  these reached genome-
wide significance. In order to further evaluate these nominally 
significant associations, gene-level burden testing analysis was 
conducted. None of  the 13 burden tests was statistically significant 
(Table 3).

All genetic effects on virologic response were stratified based 
on type of  regimen to test associations specific to treatment 
with triple NRTI-based, NNRTI-based and PI-based regimens. 

http://ccge.medschl.cam.ac.uk/software/aml/
http://ccge.medschl.cam.ac.uk/software/aml/
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Associations between SNPs in these ADME genes and response 
to HAART were observed in almost all genes for the three 
regimen types. Again, no single association achieved genome-
wide significance in any of  the three regimen types. Gene-level 
associations were assessed for each type of  treatment regimen to 
evaluate evidence of  association after taking into account all of  
the variation in the region and accounting for correlation between 
the SNPs. No significant (P<0.05) burden tests were observed 
for the NNRTI-based regimen group (Table 4). However, three 
significant burden tests were observed in each of  the PI-based 
regimen and the triple NRTI-alone groups.

CYP2B6, CYP2C19, and CYP2C9 were significantly associated 
with virologic response to HAART at the gene level among 
women on a PI-based regimen (p-values 0.049, 0.038 and 
0.027, respectively). CYP2C9 was also associated with response 
to HAART in the triple NRTI-alone group (p=0.021) as were 
ADH1A and UGT1A1 (p-values 0.017 and 0.029, respectively). 

By chance, 2.5 significant burden tests would be expected 
compared to six observed.

Discussion

We evaluated the relationship between variation in 13 genes 
involved in the absorption, distribution, metabolism and 
elimination of  ARVs and virologic response to an initial HAART 
regimen and observed twice as many gene-level burden tests 
with p-values less than 0.05 compared to what was expected. 
This suggests that variation in CYP2B6, CYP2C19, and CYP2C9 
are associated with virologic response to PI-based regimens and 
variation in CYP2C9, ADH1A and UGT1A1 are associated with 
responses to regimens containing three NRTIs.

The lack of  association overall (Table 3) is not surprising given 
the expected class-specific effects of  these genes. CYP2B6 is only 
known to be involved directly in the metabolism of  NNRTIs, 

Table 1. Description of  women who initiated HAART during follow-up in the Women's Interagency HIV Study in the final 
analytic dataset (N=569).

Responders (N=335)
N (%)

Non-responders (N=234)
N (%)

Site
Bronx, NY 65 (19%) 44 (19%)

Brooklyn, NY 54 (16%) 44 (19%)
Washington, DC 38 (11%) 29 (12%)
Los Angeles, CA 59 (18%) 56 (24%)

San Francisco, CA 58 (17%) 30 (13%)
Chicago, IL 61 (18%) 31 (13%)

Self-identified ethnicity
African-American 182 (57%) 143 (62%)

Hispanic 70 (22%) 66 (28%)
Non-Hispanic white 65 (21%) 23 (10%)

Type of  therapy
NRTI + NNRTI 113 (34%) 53 (23%)

NRTI + PI 193 (58%) 173 (74%)
NRTIs only 29 (9%) 8 (3%)

Adherence at HAART initiation visit
≥95% 188 (56%) 71 (30%)
<95% 26 (8%) 28 (12%)

Missing* 121 (36%) 135 (58%)
AIDS diagnosis

Before HAART initiation 120 (36%) 102 (44%)
Never† 215 (64%) 132 (56%)

Naive to antiretroviral drugs
No 166 (50%) 173 (74%)
Yes 169 (50%) 61 (26%)

CD4 count (mean, sd)‡ 323 (207) 295 (197)
HIV-1 RNA copies/ml (mean, sd)‡ 65,974 (186,297) 128,306 (301,444)

* Participants initiated HAART prior to collection of  adherence data at visit 9
† No AIDS diagnosis prior to HAART initiation visit

‡ At visit prior to HAART initiation visit
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though its activity is inhibited by the pharmacoenhancer, ritonavir 
[33]. The burden p-value for CYP2B6 was 0.049 for the PI 
based regimen and this association may likely be due to chance. 
CYP2C19 and CYP2C9 (burden p values of  0.038 and 0.027, 
respectively) are both known to be involved in the metabolism of  
PIs [34, 35]. Genetic polymorphisms in both of  these genes are 
known to markedly influence the clearance of  other drugs [36].

ADH1A and UGT1A1 are the only genes known to be involved 
in the metabolism of  NRTIs and the burden test p-values for 
these genes with triple NRTI regimens were 0.017 and 0.029, 
respectively. ADH1A and UGT1A1 are both involved in the 

metabolism of  the NRTI abacavir [37]. SNPs in these regions 
could slow drug metabolism, possibly resulting in higher serum 
concentrations and more effective responses. CYP2C9 was 
also associated with NRTI-only treatment (burden test p value 
0.021); as this gene was not previously known to be involved with 
NRTI metabolism, this could be a chance association. NRTI-
only regimens are no longer recommended, but these results do 
provide insight into the metabolism of  these drugs.

The major limitation of  this study is the small sample size 
resulting in limited power to detect modest effects. Burden testing 
is a useful tool in this context to determine whether there is value 

Table 2. Description of  the SNP coverage in the three racial/ethnic groups for the 13 genes studied.

African 1000 Genomes Project 
Samples

European 1000 Genomes Project 
Samples

Hispanic 1000 Genomes Project 
Samples

Gene kb

No. of  im-
puted* and 

genotyped 1000 
SNPs with 

MAF > 0.05

Percentage of  
1000 Genomes 

SNPs tagged by 
genotyped and 
imputed SNPs 

(r2 > 0.95)

No. of  im-
puted* and 

genotyped 1000 
SNPs with 

MAF > 0.05

Percentage of  
1000 Genomes 

SNPs tagged by 
genotyped and 
imputed SNPs

(r2 > 0.95)

No. of  im-
puted* and 

genotyped 1000 
SNPs with 

MAF > 0.05

Percentage of  
1000 Genomes 

SNPs tagged by 
genotyped and 
imputed SNPs 

(r2 > 0.95)
ABCB1 218.434 320 80% 225 93% 225 93%
ADH1A 30.913 80 91% 58 97% 59 97%
CYP1A2 25.277 58 91% 28 90% 33 94%
CYP2A6 20.661 19 24% 6 26% 9 17%
CYP2B6 45.729 166 89% 161 97% 142 96%
CYP2C19 106.482 103 78% 121 94% 81 84%
CYP2C9 68.019 95 96% 193 97% 122 94%
CYP2D6 18.666 80 77% 43 81% 51 76%
CYP2E1 29.21 145 92% 83 94% 109 96%
CYP3A4 42.511 72 85% 20 95% 35 100%
CYP3A5 19.647 12 50% 2 67% 8 53%
NR1I2 52.335 155 94% 95 98% 91 100%

UGT1A1 30.265 94 90% 68 96% 69 96%

* SNPs with an imputation r2 ≥ 0.50 included.

Table 3. Gene level associations for response to HAART in all subjects, regardless of  regimen type.

All Regimens Combined (335 responders, 234 non-responders)

Gene No. of  SNPs significant at
p ≤ 0.05

rsID of  most significant
SNP p-value Burden test

p-value
ABCB1 22 rs4728709 0.010 0.96
ADH1A 1 rs113917656 0.030 0.92
CYP1A2 6 rs17861122 0.032 0.36
CYP2A6 3 rs111825958 0.023 0.49
CYP2B6 52 rs11673270 0.001 0.46
CYP2C19 83 rs11188090 0.003 0.44
CYP2C9 59 rs17443251 0.004 0.55
CYP2D6 1 rs12157650 0.028 0.56
CYP2E1 22 rs10857731 0.007 0.66
CYP3A4 38 rs4646437 0.001 0.84
CYP3A5 24 chr7_99295703_I 0.017 0.55
NR1I2 7 rs147905983 0.016 0.87

UGT1A1 7 rs11690786 0.02 0.94
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in further follow-up of  observed associations. Although some of  
the burden test results in our study may still be due to chance, the 
observation of  six significant results suggests that one of  these 
regions might be associated with virologic response to HAART 
and further study is warranted. The next steps in evaluating these 
associations are complicated by the fact that a region and not a 
SNP has been implicated. Thus for replication and extension of  
our findings, dense coverage of  the regions would be needed and, 
optimally the population would also be female, as gender-specific 
effects cannot be ruled out. Fine mapping of  the regions in the 
WIHS population that included rare variants is another option; 
if  the true causal allele(s) are associated with a stronger effect, it 
might be possible to identify which of  these six regions is truly 
associated with virologic response to HAART. In addition, some 
of  these regions have poor coverage, particularly in the African 
American populations (Table 2), which likely limits the ability to 
detect significant associations for this group.

Though no genome wide assocations were detected, several gene 
level statistically significant associations were identified. Despite 
the low power of  this study, at least one of  these associations is 
likely to be true and not due to chance alone. Defining genetic 
factors that impact virologic response could lead to improvements 
in individualizing treatment for HIV-positive patients through 
genetic screening. Further studies are needed to more finely map 
these genetic regions harboring putative variants associated with 
virologic responses to specific HAART regimens.
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