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Introduction

α-Amylases are starch degrading enzymes that catalyze the 
hydrolysis of  α-1,4-O-glycosidic bonds in polysaccharides with 
the retention of  α-anomeric configuration in the products. Most 
of  the α-amylases are metalloenzymes which require calcium 
ions (Ca2+) for their activity, structural integrity and stability [1]. 
Amylases are one of  the most important industrial enzymes that 

have a wide variety of  applications ranging from conversion of  
starch to sugar syrups, to the production of  cyclodextrins for 
the pharmaceutical industry. These enzymes account for about 
30% of  the world’s enzyme production [2]. The α-amylase family 
can roughly be divided into two groups: the starch hydrolyzing 
enzymes and the starch modifying or transglycosylating enzymes 
[3]. It has been variously documented that the fungi are capable 
of  production of  enzymes including the α-amylases [4, 5]. 
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An expression vector containing the Taka-amylase A gene from 
Aspergillus oryzae, which was fused to the strong promoter and 
signal peptide sequence of  the cellobiohydrolase 1 gene (cbh 1) 
of  Trichoderma viride and the hygromycin B resistance gene was 
used to transform protoplasts of  Trichoderma viride [6]. Cloning of  
genes of  amylase from rumen microorganisms mainly Escherichia 
coli using molecular biological techniques has been made 
possible in new attempts in the field of  rumen microbiology 
[7]. Amylase produced by Saccharomyces cerevisae when cocultured 
with Monascus isolate was effector of  significant morphological 
changes including enhanced cell growth and pigment production 
in Monascus [8]. Studies carried out by Skovgaard and Rosendahl 
[9] revealed the production of  amylases by Fusarium oxysporum 
from different habitats in culture media. According to Legin et al., 
[10], Thermococcus hydrothermalis and Thermococcus fumicolans isolated 
from deep sea were amylase producers. Sporothichum thermophile 
Apinis produce amylase with activity reaching approximately 
45.2 M-Units after 5 days of  growth [11]. Hayashi and Nozaki 
[12] reported the isolation and characterization of  gibbestatin B, 
an inhibitor of  gibberellin-induced expression of  alpha-amylase 
and gibbestatin C from Streptomycetaes. Amylase producers, 
Vibrio and Aeromonas found in the mid gut of  thalassinidea mud 
shrimp (Upogebia stellata) are likely to play significant roles in the 
digestion of  gut content [13]. An amylolytic activity that converts 
soluble starch to α, α-trehalose (trehalose) was found in the cell 
homogenate of  hyperthermophilic, acidophilic archaeum Sulfobolus 
sulfataricus KM1 [14]. α-Amylase with activity reaching 289 U/L 
was detected in a cell extract of  Thermcoccus hydrothermalis grown 
in culture medium after 24h [15]. Ogawa et al., [16] reported the 
inactivation of  alpha amylase by basic dyes. Douglas et al., [17] in 
their study demonstrated the detection of  a noncovalent protein-
protein complex between alpha amylase and its microbial inhibitor 
tendamistat using ESI-MS. Two amylolytic enzymes, purified 
using affinity and ion-exchange chromatography were isolated 
from a thermophilic strain of  Bacillus licheniformis [18]. A mutant 
from the co-culture of  Aspergillus foetidus and Rhizopus oryzae was 
sensitive to tetracycline and was an over producer of  amylase 
when compared with the wild strain [19]. Transformed strains of  
Saccharomyces kluyveri (investigated under aerobic glucose-limited 
conditions) and Saccharomyces cerevisae secreted alpha-amylase with 
similar yields during continuous cultivations. Saccharomyces kluyveri 
was able to produce α-amylase concentrations as high as 320mg/l 
in a fed-batch cultivation [20]. A variant of  Saccharomyces cerevisiae 
pep4 strain 20B12 with improved oligotrophic proliferation and 
cell survival is able to secrete heterologous mouse alpha-amylase 
[21]. The RegA protein, a Clostridium acetobutylicum regulator 
gene product affecting amylase production in Bacillus subtilis 
inhibited the degradation of  starch by Clostridium acetobutylicum 
[22]. The application of  dual promoters in recombinant DNA 
technology increased the productivity of  α-amylase from Bacillus 
amyloliquefaciens [23]. Studies on the nucleotide sequence of  the 
coding and regulatory regions of  the alpha amylase gene (ama1) 
of  Streptomyces limosus have revealed that the amino-terminal 
sequence of  the extracellular enzyme contains a typical signal 
peptide preceding the mature form of  the α-amylase [24]. 
Sequencing upstream of  Streptococcus mutans gene with homology 
to a CcpA gene, regM, revealed an open reading frame, named 
amy, with homology to genes encoding α-amylase [25]. Trans-
acting regulatory protein(s) interact with region III in the promoter 
regions of  the amylase-encoding genes amy B, gla A and agd A of  
Aspergillus oryzae that are common to these amylase genes [26]. In 
a study involving the natural viability of  the thermophilic culture 

of  Bacillus diasticus, the population of  the cells of  the isolate was 
observed to be genetically heterologous with the bulk of  the cells 
(75%) showing high activity of  amylase biosynthesis [27]. 

This work is aimed to optimization of  composition of  growth 
medium to increase production of  extracellular α-amylases by two 
fungal strains: Aspergillus vadensis and Aspegillus oryzae isolated from 
deteriorated seeds of  barley (Hordeum Vulgare L.).

Materials and Methods

Source and Identification of  Isolates

The tropical fungal strains Aspergillus vadensis and Aspegillus oryzae 
for this research were isolated from deteriorated seeds of  barley 
(Hordeum Vulgare L.) grown in Jos, Plateau State, Nigeria. They 
were identified at the Seed Health Unit of  the International 
Institute of  Tropical Agriculture (IITA), Ibadan, Nigeria using 
standard fungi identification techniques [6]. Identity of  fungi was 
further confirmed by genetic DNA sequencing using Polymerase 
Chain Reaction (PCR) at the Bioscience Laboratory of  the 
International Institute of  Tropical Agriculture (IITA), Ibadan, 
Nigeria. The isolates were cultured on potato dextrose agar slants 
and plates.

Culture Conditions and Inocula

The tropical fungal strains Aspergillus vadensis and Aspergillus 
oryzae isolated from deteriorated barley seeds were grown in 
a defined growth medium with varying nitrogen and carbon 
sources of  fungal growth. The isolates were also grown on 
barley-seed medium used as carbon source of  fungal growth. 
The isolates Aspergillus vadensis and Aspergillus oryzae were cultured 
and maintained on potato dextrose agar slants and plates. Each 
fungus was sub-cultured on the test tubes of  the same medium 
and incubated at 25°C. The one hundred and twenty-hour-old 
cultures of  each isolate were used in this investigation. According 
to the modified method of  Olutiola and Ayres [29], cultures were 
grown in a defined basal medium of  the following composition: 
MgSO4.7H20 (0.1 g), K2HPO4 (2 g), KH2PO4 (0.5 g), aspartic acid 
(0.1 g), biotin (0.005 mg), thiamine (0.005 mg) and FeSO4.7H2O 
(1 mg) with a nitrogen source (9.9 g) and a carbon (10 g) source 
(Sigma) per 1 litre of  distilled water. When the carbon source 
used was varied, the nitrogen source was potassium nitrate (9.9 
g per litre of  medium). The carbon sources were independently 
starch, maltose, sucrose, lactose, glucose and galactose (10g per 
litre of  medium). When the nitrogen source used was varied, 
the carbon source was starch (10g per litre of  medium). The 
nitrogen sources were independently ammonium chloride, urea, 
potassium nitrate, ammonium sulphate, glycine, sodium nitrate, 
tryptone and peptone (9.9 g per litre of  medium). Conical flasks 
(250 ml) containing 100 ml growth medium were inoculated with 
1 ml of  an aqueous spore suspension containing approximately 5 
x 106 spores per 1 ml of  isolate. Spores were counted using the 
Neubauer counting chamber [30, 31]. Experimental and control 
flasks were incubated without shaking at 25°C [32]. Protein 
content of  the inoculated medium was determined using the 
Lowry et al., [33] method.

Barley Seeds as Source of  Carbon

The healthy Barley (Hordeum Vulgare L.) seeds were obtained 
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from the Jos International Brewery, Jos, Plateau State, Nigeria. 
They were weighed, soaked in distilled water (1% w/v) and then 
sterilized by autoclaving at 15 psi (121°C) for 15 minutes. This 
temperature ensures inactivation of  both endogenous α-amylase 
and α-amylase inhibitor in the barley seeds but with care not to 
destroy the carbohydrate content of  the seeds [34]. The each 100 
ml of  the barley-seed medium contained in conical flasks (volume 
of  250 ml) was inoculated with 1 ml of  aqueous spore suspension 
containing approximately 5 x 106 spores per 1 ml of  one hundred 
and twenty-hour-old cultures of  isolate. Incubation was at 25°C.

Extraction of  Enzyme

On a daily basis, the contents of  each flask were carefully filtered 
through glass fibre filter paper (Whatman GF/A). The protein 
content of  the filtrates was determined [33]. The filtrates were 
also assayed for α-amylase activity [35].

Enzyme Assay

α-amylase: α-Amylase activity was determined using the method 
of  Pfueller and Elliott [35]. Reaction mixtures consisted 2 ml of  
0.2% (w/v) starch in 0.2 M citrate phosphate buffer, pH 6.0 as 
substrate and 0.5 ml of  enzyme. Controls consisted only 2 ml of  
the prepared substrate. The contents of  both experimental and 
control tubes were incubated at 35°C for 20 min. The reaction in 
each tube was terminated with 3 ml of  1 N HCl. 0.5 ml enzyme 
was then added to the control tubes. The 2ml mixture of  each 
experimental and control was transferred to new sets of  test 
tubes. The 3ml of  0.1 N HCl was added into the contents of  each 
test tube after which 0.1 ml of  iodine solution was added. Optical 
density readings were taken at 670nm. One unit of  α-amylase 
activity was defined as the amount of  α-amylase which produced 
0.1 percent reduction in the intensity of  the blue colour of  starch-
iodine complex under conditions of  the assay.

Results

The isolates of  two tropical fungal strains: Aspergillus vadensis 
and Aspergillus oryzae obtained from deteriorated Barley (Hordeum 
Vulgare L.) seeds grew and exhibited α-amylase activities in both 
barley-seed medium and the defined growth medium used in this 

investigation at the temperature of  25°C (Figure 1).

Amylase activities expressed by each isolate in a ten day incubation 
period at 25°C are presented in Tables 1–4.

Our studies conducted on the fungal strains Aspergillus vadensis 
revealed that when barley-seed was a carbon source as well as 
sole nutrient source for fungal growth, the optimum activity of  
α-amylase produced by this fungus was observed on the 8th day 
of  inoculation of  medium and was equal to 0.55 Units. When 
potassium nitrate was used as a nitrogen source of  fungal growth 
in our defined medium and starch was used as a carbon source, 
the optimum activity of  α-amylase produced by this isolate was 
observed on the 7th day of  inoculation of  medium and was 
equal to 0.47 Units. With maltose used as a carbon source, the 
optimum activity of  α-amylase was also detected on the 7th day 
of  inoculation of  medium and was equal to 0.675 Units. When 
sucrose was used as a carbon source, the optimum activity of  
α-amylase was observed on the 8th day of  inoculation of  medium 
and was equal to 0.565 Units. With lactose used as a carbon 
source, the optimum activity of  α-amylase was produced on day 
7th day of  inoculation of  medium and was equal to 0.45 Units. 
When glucose was used as a carbon source of  fungal growth, 
the optimum activity of  α-amylase was observed on the 7th day 
of  inoculation of  medium and was equal to 0.69 Units. When 
galactose was used as a carbon source, the optimum activity of  
α-amylase was observed on the 10th day of  inoculation of  medium 
and was equal to 0.055 Units (Table 1).

When the carbon source of  fungal growth in the defined medium 
was starch and the nitrogen source was ammonium chloride, the 
optimum activity of  α-amylase produced by Aspergillus vadensis was 
observed on the 9th day of  inoculation of  medium and was equal 
to 3.625 Units. With urea used as a nitrogen source, the optimum 
activity of  α-amylase produced by Aspergillus vadensis was observed 
on the 9th day of  inoculation of  medium and was equal to 0.375 
Units. When potassium nitrate was used as a nitrogen source, the 
optimum activity of  α-amylase produced by Aspergillus vadensis 
was observed on the 8th-9th days of  inoculation of  medium and 
was equal to 0.375 Units. With ammonium sulphate used as a 
nitrogen source of  fungal growth, the optimum activity of  
α-amylase produced by Aspergillus vadensis was observed on the 
9th day of  inoculation of  medium and was equal to 3.75 Units. 

Figure 1. The Isolates of  Two Tropical fungal strains: A - Aspergillus Oryzae and B - Aspergillus Vadensis Inoculated on 
Potato Dextrose Agar Plates.
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With glycine used as a nitrogen source, the optimum activity of  
α-amylase produced by Aspergillus vadensis was observed on the 
9th day of  inoculation of  medium and was equal to 0.375 Units. 
When sodium nitrate was used as a nitrogen source, the optimum 
activity of  α-amylase produced by Aspergillus vadensis was observed 
on the 9th day of  inoculation of  medium and was equal to 0.475 
Units. With tryptone used as a nitrogen source, the optimum 
activity of  α-amylase produced by Aspergillus vadensis was observed 
on the 8th day of  inoculation of  medium and was equal to 0.35 
Units. However, when peptone was used a as nitrogen source, the 
optimum activity of  α-amylase produced by Aspergillus vadensis was 
observed on the 8th, 9th and 10th days of  inoculation of  medium 
and was equal to 0.25 Units (Table 2).

Further studies conducted on the fungal strain Aspergillus oryzae 
revealed that when barley-seed was a carbon source as well as 
sole nutrient source for fungal growth, the optimum activity of  
α-amylase produced by this fungal strain was observed on the 
8th day of  inoculation of  medium and was equal to 0.79 Units. 
When potassium nitrate was used as a nitrogen source of  fungal 
growth in the medium and starch was used as a carbon source, 
the optimum activity of  α-amylase produced by Aspergillus oryzae 
was observed on the 5th day of  inoculation of  medium and was 
equal to 0.75 Units. With maltose used as a carbon source, the 
optimum activity of  α-amylase produced by Aspergillus oryzae 

was observed on the 5th and 6th days of  inoculation of  medium 
and was equal to 0.74 Units. When sucrose was used as a carbon 
source, the optimum activity of  α-amylase produced by Aspergillus 
oryzae was observed on the 7th day of  inoculation of  medium and 
was equal to 0.755 Units. With lactose used as a carbon source, 
the optimum activity of  α-amylase produced by Aspergillus oryzae 
was observed on the 9th day of  inoculation of  medium and was 
equal to 0.67 Units. When glucose was used as a carbon source 
of  fungal growth, the optimum activity of  α-amylase produced by 
Aspergillus oryzae was observed on the 10th day of  inoculation of  
medium and was equal to 0.625 Units. When galactose was used 
as a carbon source, the optimum activity of  α-amylase produced 
by Aspergillus oryzae was observed on the 10th day of  inoculation 
of  medium and was equal to 0.525 Units (Table 3).

When starch was used as a carbon source of  fungal growth in the 
defined medium and ammonium chloride was used as nitrogen 
source, the optimum activity of  α-amylase produced by Aspergillus 
oryzae was observed on the 8th day of  inoculation of  medium 
and was equal to 0.15 Units. With urea used as a nitrogen source, 
optimum activity of  α-amylase produced by Aspergillus oryzae was 
observed on the 9th day of  inoculation of  medium and was equal 
to 2.45 Units. When potassium nitrate was used as a nitrogen 
source, the optimum activity of  α-amylase activity produced by 
Aspergillus oryzae was observed on the 9th day of  inoculation of  

Table 1. Effect of  carbon source on α-amylase activity produced by Aspergillus vadensis.

Days
Carbon source 1 2 3 4 5 6 7 8 9 10

Barley seeds

Activity
(Units) 0.00 0.00 0.035 0.075 0.11 0.425 0.42 0.55 0.515 0.51

Protein
(OD 600nm) 0.25 0.18 0.22 0.272 0.293 0.28 0.342 0.30 0.32 0.453

Starch

Activity
(Units) 0.00 0.00 0.00 0.00 0.00 0.01 0.47 0.395 0.34 0.45

Protein
(OD 600nm) 0.14 0.265 0.165 0.165 0.185 0.155 0.15 0.235 0.21 0.25

Maltose 

Activity
(Units) 0.10 0.00 0.035 0.01 0.03 0.55 0.675 0.58 0.58 0.525

Protein
(OD 600nm) 0.35 0.385 0.37 0.33 0.32 1.13 0.925 0.51 0.62 0.65

Sucrose

Activity
(Units) 0.10 0.02 0.005 0.02 0.01 0.26 0.405 0.565 0.53 0.46

Protein
(OD 600nm) 0.84 0.875 0.87 0.88 1.45 0.815 0.925 0.68 0.725 0.85

Lactose

Activity
(Units) 0.015 0.015 0.025 0.01 0.02 0.03 0.45 0.025 0.025 0.10

Protein
(OD 600nm) 0.255 0.21 0.195 0.195 0.18 0.205 0.32 0.315 0.285 0.235

Glucose 

Activity
(Units) 0.015 0.03 0.045 0.05 0.05 0.115 0.69 0.565 0.56 0.495

Protein
(OD 600nm) 0.33 0.405 0.46 0.43 0.425 0.475 0.385 0.26 0.47 0.58

Galactose

Activity
(Units) 0.05 0.06 0.01 0.03 0.04 0.015 0.05 0.01 0.02 0.055

Protein
(OD 600nm) 0.14 0.225 0.23 0.25 0.26 0.385 0.445 0.355 0.24 0.25
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Table 2. Effect of  nitrogen source on α-amylase activity produced by Aspergillus vadensis.

Days
Nitrogen Source 8 9 10

Ammonium 
chloride 

Activity (Units) 3.5 3.625 3.15
Protein (OD 600nm) 0.315 0.45 0.45

Urea
Activity (Units) 0.25 0.375 0.25

Protein (OD 600nm) 0.55 0.80 0.9

Potassium nitrate
Activity (Units) 0.375 0.375 0.50

Protein (OD 600nm) 0.625 0.80 0.65

Ammonium 
sulphate

Activity (Units) 2.825 3.75 3.275
Protein (OD 600nm) 0.525 0.70 0.625

Glycine
Activity (Units) 0.35 0.375 0.375

Protein (OD 600nm) 0.975 1.625 1.325

Sodium nitrate
Activity (Units) 0.35 0.475 0.375

Protein (OD 600nm) 0.725 0.975 0.70

Tryptone
Activity (Units) 0.35 0.25 0.25

Protein (OD 600nm) 3.75 4.375 3.45

Peptone
Activity (Units) 0.25 0.25 0.25

Protein (OD 600nm) 3.325 3.55 2.975

Table 3. Effect of  carbon source on α-amylase activity produced by Aspergillus oryzae.

Days
Carbon source 1 2 3 4 5 6 7 8 9 10

Barley seeds Activity (Units) 0.085 0.175 0.25 0.40 0.415 0.58 0.765 0.79 0.725 0.73
Protein (OD 600nm) 0.65 0.73 0.85 0.83 0.79 0.9 1.45 1.9 1.9 1.9

Starch Activity (Units) 0.05 0.00 0.33 0.545 0.75 0.695 0.58 0.575 0.565 0.565
Protein (OD 600nm) 0.255 0.295 0.36 0.39 0.485 0.76 0.85 0.925 1.0 1.0

Maltose Activity (Units) 0.025 0.045 0.395 0.57 0.74 0.74 0.705 0.73 0.68 0.68
Protein (OD 600nm) 0.135 0.15 0.165 0.18 0.24 0.365 0.585 0.80 0.745 0.9

Sucrose Activity (Units) 0.005 0.025 0.005 0.075 0.075 0.42 0.755 0.73 0.69 0.68

Protein (OD 600nm) 0.44 0.545 0.555 0.55 0.615 0.78 0.70 0.825 1.375 1.4
Lactose Activity (Units) 0.005 0.02 0.03 0.075 0.025 0.10 0.26 0.43 0.67 0.655

Protein (OD 600nm) 0.16 0.285 0.53 0.485 0.51 0.315 0.53 0.85 0.95 1.0
Glucose Activity (Units) 0.01 0.005 0.03 0.025 0.01 0.11 0.41 0.59 0.595 0.625

Protein (OD 600nm) 0.53 0.62 0.69 0.63 0.805 0.975 1.4 0.975 0.975 1.45
Galactose Activity (Units) 0.015 0.02 0.08 0.17 0.15 0.24 0.36 0.415 0.45 0.525

Protein (OD 600nm) 0.36 0.385 0.515 0.53 0.505 0.575 0.725 0.925 0.925 0.975

Table 4. Effect of  nitrogen source on α-amylase activity produced by Aspergillus oryzae.

Days
Nitrogen Source 8 9 10

Ammonium chloride 
Activity (Units) 0.15 0.05 0.05

Protein (OD 600nm) 0.50 0.65 0.65

Urea
Activity (Units) 2.275 2.45 2.325

Protein (OD 600nm) 1.05 1.25 1.20

Potassium nitrate
Activity (Units) 1.375 0.625 1.3

Protein (OD 600nm) 0.70 0.925 0.75

Ammonium sulphate
Activity (Units) 0.075 0.10 0.05

Protein (OD 600nm) 0.80 1.1 1.1

Glycine
Activity (Units) 2.80 2.525 2.475

Protein (OD 600nm) 1.35 1.55 1.40

Sodium nitrate
Activity (Units) 1.575 0.575 1.475

Protein (OD 600nm) 0.75 0.825 0.65

Tryptone
Activity (Units) 0.125 0.125 0.20

Protein (OD 600nm) 4.075 8.45 6.4

Peptone
Activity (Units) 1.125 1.475 1.50

Protein (OD 600nm) 0.35 0.45 1.05
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medium and was equal to 0.625 Units. With ammonium sulphate 
used as a as nitrogen source of  fungal growth, the optimum 
activity of  α-amylase produced by Aspergillus oryzae was observed 
on the 9th day of  inoculation of  medium and was equal to 0.10 
Units. With glycine used as a as nitrogen source, the optimum 
activity of  α-amylase produced by Aspergillus oryzae was observed 
on the 8th day of  inoculation of  medium and was equal to 2.80 
Units. When sodium nitrate was used as a nitrogen source, the 
optimum activity of  α-amylase produced by Aspergillus oryzae 
was observed on the 8th day of  inoculation of  medium and was 
equal to 1.575 Units. With tryptone used as a nitrogen source, the 
optimum activity of  α-amylase produced by Aspergillus oryzae was 
observed on the 10th day of  inoculation of  medium and was equal 
to 0.20 Units. When peptone was used as a nitrogen source, the 
optimum activity of  α-amylase produced by Aspergillus oryzae was 
observed on the 10th day of  inoculation of  medium and was equal 
to 1.50 Units (Table 4).

Discussion

Barley (Hordeum Vulgare L.) is a member of  the grass family and a 
major cereal family grown in the temperate regions of  the globe 
[36]. It is also grown in cold regions of  the tropics such as Jos, 
Plateau State in tropical Nigeria, West Africa [37]. It is a rich 
source of  essential nutrients such as protein, dietary fibre, vitamin 
B6, niacin, dietary minerals such as manganese and phosphorous 
[38]. Raw barley contains approximately 78% carbohydrate, 1% 
fat, 10% protein, 10% water [39]. It is used in the production of  
beer and certain distilled beverages [39]. Studies have shown that 
barley and barley seeds contain both endogenous α-amylases and 
α-amylase inhibitors [40]. However, autoclaving the barley and 
barley seeds at a temperature as high as 121°C for 15 minutes is 
enough to destroy both the endogenous α-amylase and α-amylase 
inhibitor [41]. With the destruction of  the endogenous α-amylase 
evidenced with nil α-amylase activity observed at the 1st and 2nd 
days for barley-seed medium inoculated with Aspergillus vadensis, 
and vice versa the presence of  activity on subsequent days is 
indicative of  production of  this enzyme by the inoculating fungal 
strain. Also α-amylase activity was detected starting 1st day (24 hr 
after inoculation with isolate) with barley-seed medium inoculated 
with Aspergillus oryzae.

The carbohydrates in the barley seeds are hydrolysed by the 
enzyme (α-amylases), presumably yielding maltose, maltotriose 
and α-dextrins [31, 42]. These products of  hydrolysis in increasing 
concentration may serve nutritive and beneficial values to the 
consumers. Also, the presence of  fats and proteins may stimulate 
the production of  other enzymes such as microbial lipases and 
proteases depending on the infecting phytopathogen of  the 
natural un-harvested barley. 

The results observed for inoculated barley seeds in Tables 1 and 
2 by the two fungal strain seem not to follow a natural pattern for 
enzyme production, that is, activity rising steadily with days of  
inoculation, reaching a peak and falling gradually. Enzymes are 
proteins and their presence in the inoculated medium is evidenced 
with observed values at optical density 600nm readings using 
the Lowry et al., [33] method. It is therefore suggested that the 
products of  enzymatic (α-amylase) hydrolysis might probably be 
inhibiting expression and production of  the enzyme at the genetic 
level or that these α-amylases might be targets of  hydrolyses by 

proteases produced by the fungi. 

When potassium nitrate was used as a nitrogen source, maltose 
and glucose were the best carbon sources for fungal growth and 
production of  the most active α-amylases by the fungal strain 
Aspergillus vadensis at 25°C. Barley seeds, starch and sucrose 
seemed the best carbon sources for fungal growth and production 
of  α-amylase by the fungal strain Aspergillus oryzae at this same 
temperature. Ammonium chloride and ammonium sulphate were 
the best nitrogen sources for production of  α-amylase by the 
fungal strain Aspergillus vadensis when starch is the carbon source 
in the medium for fungal growth at 25°C. However, urea, glycine 
and sodium nitrate were the best nitrogen sources for fungal 
strain Aspergillus oryzae. 
 
Russia and Ukraine are currently recognized as the world’s second 
largest producers of  barley. Nigeria, West Africa is recently being 
introduced to the production of  this highly adaptive cereal. The 
industrial production of  active α-amylases is encouraged using 
either of  the two fungal isolates in Nigeria and Ukraine.
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