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Introduction 

Shrimp aquaculture suffers significant annual losses on a global 
basis due to viral disease outbreaks. White Spot Disease (WSD), 
caused by the White Spot Syndrome Virus (WSSV), has been the 
most problematic viral pathogen affecting global shrimp farming 
since its emergence in 1992. WSSV is highly virulent and may re-
sult in 80-100% mortality in ponds within 7-10 days of  infection 
[13]. The cumulative economic losses due to WSSV epidemics 
to the shrimp aquaculture industry stand at over 8 billion dollars 
since its first appearance in 1992 [5].

WSSV is one of  the most widespread viruses in the shrimp indus-
try, occurring in virtually all shrimp farming countries. Over 100 
crustacean species have been found to be susceptible to WSSV, 
including shrimp, crayfish, crabs, and lobsters, these hosts can 
also act as carriers of  the virus [1] The two most widely cultivated 
species of  shrimp, Litopenaeus vannamei (Pacific white shrimp) and 
Penaeus Monodon (tiger shrimp) are highly susceptible to WSSV 
infection. WSSV is a very large bacilliform, non-occluded, envel-
oped virus with a flagella-like appendage at one end of  the viral 
particle [3, 24, 27, 6]. The WSSV genome is one of  the largest vi-
ral genomes sequenced, consisting of  a circular, double-stranded 
DNA molecule ranging from 290 to 315 kb, depending upon the 
isolate [23, 31]. The genome is predicted to contain about 181 
protein encoding open reading frames [23, 31, 6].

Various strategies have been tried to control WSSV infection in 
shrimp, including use of  inactivated virus and recombinant pro-
tein-based subunit vaccines [18, 26, 11]. To date, no validated vac-
cine or therapeutic agent against WSSV is available in the market.
RNA interference (RNAi)-based strategies appear tobe promising 
for the control of  WSSV and other viral diseases of  shrimp [20]. 
RNAi refers to a cellular mechanism that is initiated via double 
stranded RNA (dsRNA) resulting in inhibition of  gene expres-
sion through chromatin modification, translational repression or 
sequence-specific degradation of  target RNA [7, 16]. The RNAi 
machinery appears to be conserved among most eukaryotes, in-
cluding invertebrates, and involves three steps: (i) processing of  
long dsRNA into 21 to 23 nucleotide fragments called small inter-
fering RNAs (siRNAs) by an RNase III family enzyme called Dic-
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er (Hammond et al. 2000), (ii) incorporation of  siRNAs into the 
RNA-induced silencing complex (RISC), and (iii) siRNA-medi-
ated guiding and cleavage of  target messenger RNA (mRNA) by 
the RISC resulting in gene silencing [8, 9, 15]. Novel biotechno-
logical applications of  RNAi such as animal gene therapy [4, 22], 
control of  mosquitoes [12] andcontrol of  insect-pests of  impor-
tant agricultural crops [10, 30, 2] are being explored. The potential 
of  RNAi for controlling the replication and spread of  WSSV has 
also been explored. Table 1 provides a summary of  studies con-
ducted on evaluating the effectiveness of  dsRNA treatment on 
protecting shrimp against WSSV infection. The first report dem-
onstrating that exposure of  marine shrimp to dsRNA induces in-
nate antiviral immunity in a sequence independent manner was 
published in 2004 [19]. Since then, several studies demonstrated 
that injection of  dsRNA targeting ribonucleotide reductase small 
subunit (rr2), DNA polymerase (dnapol), viral protein 28 (vp28) 
and viral protein 19 (vp19) provides significant and potent anti-
viral immunity against WSSV compared to injection of  non-spe-
cific dsRNA [20, 17]. Oral delivery of  bacterially-expressed vp28 
dsRNA has also been reported to provide some protection [21]. 
While, most of  these studies involved challenge of  treated shrimp 
with the virus within 72 h post-injection of  RNAi elements [20, 
25, 29], only one study tried to evaluate the effectiveness of  RNAi 
treatment in protecting shrimp against WSSV 10 days and 20 days 
post-treatment [17]. For anRNAi-based treatment to be commer-
cially viable, it should be able to provide protection against WSSV 
for at least 7 to 10 days post-RNAi treatment. Otherwise, the 
cost of  delivering RNAi elements, either through feed or injec-
tion, would make it impossible for shrimp farmers to adopt this 
technology. The present study developed novel RNAi elements 
targeting WSSV, tested their abilityto control WSSV by injection, 
and demonstrated the efficacy of  the RNAi-elements to provide 
effective protection for 28 days post-delivery of  RNAi elements 
to Litopenaeus vannamei against WSSV.

Materials and Methods

dsRNA Synthesis

Two DNA fragments, one consisting of  273 bp of  vp28 (Gen-
Bank Accession No. HM484390.1) and 266 bp of  vp19 (Gen-
Bank Accession No. AY316119.1) and another consisting of  
251 bp of  the rr2 (GenBank Accession No. AF144620.1) and 
260 bp of  the tk-tmk (GenBank Accession No. FJ756475.1) 
genes of  WSSV were created by DNA synthesis (Epoch Life 
Science, Texas, USA). PCR reactions were set with primers T7-
vp28 (5’-ATTAATACGA CTCACTATAG GGAGACACAG 
GCAATATCGA GACAAACATG GATGAAAAC-3’) and T7-
vp19 (5’-GATAATACGA CTCACTATAG GGAGATTATA 
TTTGTCCTCA TCATCGTTAT CGTTGGC -3’) to add the T7 
promoter to both ends of  the vp28-vp19 fusion. The PCR prod-
uct from the above reaction was used as a template to synthesize 
vp28-vp19 dsRNA using MEGA script RNAi kit (Life Technolo-
gies, Carlsbad, California, USA) following the manufacturer’s pro-
tocol. Similarly, PCR reactions were setwith the primers T7-rr2 
(5’-ATTAATACGACTCACTATAGGGAGAGAGTGGGC-
TATTAATTGGATGCAAA G-3’) and T7-tk-tmk (5’-GA-
TAATACGACTCACTATAGGGAGATTAGA TGCTAGCT-
TAACAATGGAATTTGTATAAG-3’) to add the T7 promoter 
to both ends of  rr2-tk-tmk fusion. The PCR product was then 
used as the template to synthesize rr2-tk-tmk dsRNA using the-
MEGA script RNAi kit (Life Technologies, Carlsbad, CA) fol-

lowing the manufacturer’s protocol. Quality and concentration 
of  vp28-vp19 and rr2-tk-tmk dsRNAs was measured using a 
Nanodrop® spectrophotometer (Thermo Fisher Scientific Inc., 
Waltham, Maryland, USA). A small aliquot of  dsRNA from each 
of  the two reactions was run on a 1% agarose gel to check the 
quality and size of  dsRNA molecules.

Shrimp Injection Trial

Equal amounts of  vp28-vp19 and rr2-tk-tmk dsRNAs were 
pooled to create a master mix dsRNA for injection. Juvenile SPF 
(specific pathogen free) Litopenaeus vannamei (these are at approxi-
mately post-larval stage 45 (~PL45) and at 0.5-1.0 g initial weight) 
obtained from Shrimp Improvement Systems (Islamorada, FL) 
were used for the study. Twelve shrimp were placed in each of  the 
18 x 38 L tanks, which were each provided with filtration, contain-
ing UV treated saltwater (32 ppt) and maintained at 25°C. Shrimp 
were acclimated to tank conditions for three days prior to the 
start of  the experiment. Water quality parameters (temperature, 
salinity, dissolved oxygen, and pH) were recorded daily and am-
monia and nitrite levels tested weekly. Water changes of  25% were 
conducted on every other day. Dissolved oxygen, salinity, pH, am-
monia and nitrite levels remained in the normal range during the 
entire duration of  the study and no differences were seen with 
regard to tank position in the test system. Shrimp were assigned to 
one of  six groups: single or multiple dose treatments challenged 
at 5 or 14 days, positive or negative control (see Table 2) and were 
administered dsRNA (one 15 µg or three 2 µg doses in 20 µL 
of  saline) or 20 µL saline (controls) via intramuscular injection, 
three replicates per treatment group. All treatment groups and the 
positive control group were WSSV challenged per os with minced 
tissue from freshly dead, WSSV-infected shrimp at either 5 or 
14 days following treatment with dsRNA. The negative control 
group was not challenged. Mortality was followed and recorded 
for 14 days post-challenge.

Polymerase Chain Reaction (PCR) Analysis

Dead (frozen, collected) and surviving shrimp were analyzed for 
the presence of  WSSV following experiment termination.Total 
shrimp genomic DNA was purified from 25-50 mg tissue sam-
ples using the Wizard Genomic DNA Purification Kit (Promega 
Corp., Madison, WI) according to the manufacturer’s instruc-
tions.  Presence of  WSSV in tissue samples was confirmed by 
using the primer pair 146F/R [14] using pooled DNA extracted 
from samples consisting of  no more than 5 individuals per tank. 
Purified DNA was amplified in a 50 µL sample volume containing 
Choice-Taq (1 µL), a 10x buffer (5.0 µL), 25 mM dNTP’s (1µL), 1 
µL of  the appropriate forward and reverse primer (20 µM), 1 µL 
of  template DNA and 40.0µL of  sterile nuclease free water in a 
BioRad “iCycler” thermocycler.  PCR conditions were as follows: 
95°C for 30 s, followed by 35 cycles of  94°C for 30 s, an annealing 
temperature of  60°C for 30 s and an extension temperature of  
72°C for 1 min, followed by a final extension of  72°C for 5 min.

Results

Injection of  dsRNA targeting four WSSV genes provided ef-
fective protection against WSSV up to 28 days post injection

Four WSSV genes, vp28, vp19, rr2 and tk-tmk were targeted 
for control of  the WSSV in shrimp. The dsRNA targeting these 
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four genes was synthesized by in vitro transcription. Four treat-
ments were used to test the efficacy of  RNAi in limiting WSSV in 
shrimp. The treatments listed in Table 2 were designed to assess 
the dosage required to provide effective protection and to evalu-
atethe duration of  effective protection provided by the RNAi ele-
ments against WSSV.

Treatments T1 and T2, 15 µg single dose and three 2 µg doses 
challenged after 5 d, respectively, were both effective in provid-
ing protection to treated shrimp. While 80% of  the shrimp sur-
vived in T1, the survival in T2 was 100% (Figure 1A). With the 
negative control (untreated shrimp not challenged with WSSV) 
94% survival was observed. With the positive control (untreated 
shrimp challenged with WSSV) 42% mortality was observed two 
days post-challenge, which increased to 80% on the third day and 
reached 100% mortality on the fifth day (Figure 1A).

Treatments T3 and T4, 15 µg single dose and three 2 µg doses 
challenged after 14 d, respectively, also provided effective protec-
tion to treated shrimp. Survival percentage of  94% was observed 
with both treatments (Figure 1B). The results of  T3 and T4 are 

significant as they indicated that RNAi elements can survive and 
remain active in shrimp for 14 or more days and multiple small 
dosages of  dsRNA (T4) were as effective as a single large dosage 
of  dsRNA (T3) in protecting shrimp for 28 days. Figure 1C sum-
marizes the results of  all the four treatments tested.

WSSV was not detected in shrimp injected with dsRNA tar-
geting WSSV genes

Presence of  WSSV among dead and surviving individuals was 
tested using PCR at the end of  the trial. DNA was extracted from 
the dead and surviving individuals. Pooled DNA samples of  five 
individuals per tank were tested for the presence of  WSSV. While 
all negative control samples (not challenged with WSSV) were 
free of  virus, all positive control samples (not treated with dsR-
NA) tested positive for WSSV (Figure 2A and 2B). DNA from all 
RNAi treatment groups was PCR negative for the virus. This is a 
strong indication that treatment of  shrimp with dsRNA prior to 
WSSV exposure inhibited viral replication and infection, resulting 
in effective protection against WSSV (Figure 2A and 2B).

Table 1. Summary of  studies conducted on evaluating effectiveness of  dsRNA treatment on protecting shrimp 
against WSSV.

WSSV target
 gene

Shrimp 
species 
tested

Nature of  
RNA

molecule

Dosage
 amount

Delivery
route

Delivery of  RNA
molecule before or 

after challenge

WSSV chal-
lenge

method

Duration 
of

protection

Survival 
%

Refer-
ence

Ribonucleo-
tide

reductase2 
(rr2)

Litopenaeus 
vannamei dsRNA 12ug Injection at challenge Injection 9 days  78

[20]

Viral capsid
protein 28 

(vp28)

Litopenaeus 
vannamei dsRNA 12ug Injection at challenge Injection 9 days 85

DNA poly-
merase
(Dpol)

Litopenaeus 
vannamei dsRNA 12ug Injection at challenge Injection 9 days 44

Viral capsid
protein 19 

(vp19)

Litopenaeus 
vannamei dsRNA 1ug Injection 4 h before challenge

Feeding 
of  WSSV 
containing 

tissue 

9 days 72

vp28 Penaeus 
monodon siRNA 100uM Injection 24 H before chal-

lenge Injection 13 days 50

[25]Viral capsid
protein 15 

(vp15)

Penaeus 
monodon siRNA 100uM Injection 24 H before chal-

lenge Injection 13 days 42

vp28 Penaeus 
japonicus siRNA 6uM Injection at challenge Injection 12 days 30 [29]

Dpol Litopenaeus 
vannamei siRNA 10ug Injection at challenge Injection 10 days 40

[28]

rr2 Litopenaeus 
vannamei siRNA 10ug Injection at challenge Injection 10 days 40

thymidine 
kinase-

thymidylate ki-
nase (tk-tmk)

Litopenaeus 
vannamei siRNA 10ug Injection at challenge Injection 10 days 40

Viral capsid
protein 24 

(vp24)

Litopenaeus 
vannamei siRNA 10ug Injection at challenge Injection 10 days 20

vp28 Litopenaeus 
vannamei siRNA 10ug Injection at challenge Injection 10 days 40



Anil Kumar, et al., (2015) Double Stranded RNA Simultaneously Targeting four White Spot Syndrome Virus (WSSV) genes provides protection against WSSV in Lito-
penaeus Vannamei. Int J Marine Sci Ocean Technol. 2(2), 5-10 8

http://scidoc.org/IJMO.php

vp28 Litopenaeus 
vannamei dsRNA 4ug Injection 48 H before chal-

lenge Injection 10 days 87

[17]

Viral capsid
protein 26 

(vp26)

Litopenaeus 
vannamei dsRNA 4ug Injection 48 H before chal-

lenge Injection 10 days 79

vp28 Litopenaeus 
vannamei dsRNA 4ug Injection 10 days before chal-

lenge Injection 10 days 37

vp26 Litopenaeus 
vannamei dsRNA 4ug Injection 10 days before chal-

lenge Injection 10 days 20

vp28 Litopenaeus 
vannamei dsRNA 4ug Injection 20 days before chal-

lenge Injection 10 days 13

vp26 Litopenaeus 
vannamei dsRNA 4ug Injection 20 days before chal-

lenge Injection 10 days 0

Table2. Description of  dsRNA injection treatments tested in this study.

Treatment Treatment Description
T1 Single dosage of  15 µg of  dsRNA; Challenge with virus 5 days after injection
T2 Three dosages of  2 µg of  dsRNA, injection every alternate day; Challenge with virus 5 days after last injection
T3 Single dosage of  15 µg of  dsRNA; Challenge with virus 14 days after injection
T4 Three dosages of  2 µg of  dsRNA, injection every alternate day; Challenge with virus 14 days after last injection
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Figure 1. Effect of  dsRNA injection on shrimp survival following WSSV challenge. A) Cumulative percent survival observed 
among shrimp treated with T1 or T2. B)  Cumulative percent survival observed among shrimp treated with T3 or T4. C) 

Percent survival observed among shrimp treated with treatments T1, T2, T3 and T4. Experiment was carried out in tripli-
cates with 12 shrimp per replication. For treatment T2 identical survival percentage was recorded in all the three replica-

tions, hence it lacks the error bar. Positive control: Injection with buffer, challenged with WSSV, Negative control: Injection 
with buffer, not challenged with WSSV.
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Discussion

The key to development of  an RNAi-based therapeutic (pref-
erably oral) against WSSV depends on the ability of  functional 
RNAi elements to provide effective protection to shrimp against 
WSSV for an extended duration. This would allow a shrimp farm-
er to apply the therapeutic once a week to protect the shrimp 
crop from WSSV infection. This is the first study that demon-
strated that functional RNAi elements targeting WSSV genes 
delivered by injection remain active in shrimp for more than 14 
days post-treatment and provide effective protection (more than 
75% survival) to shrimp against WSSV for up to 28 days post-
delivery of  RNAi elements.The positive outcome reported in this 
study provides further impetus for development and refinement 
of  RNAi-based therapeutics. Protection of  up to 94% was ob-
served in the present study when shrimp were challenged with 
WSSV 14 days post-injection of  dsRNA targeting multiple WSSV 
genes. Only one previous study has evaluated the effectiveness of  
dsRNA targeting vp26 and vp28 on limiting WSSV infection 10 
days and 20 days post treatment, reporting 20 to 37% and 0 to 
13% survival when challenged with virus 10 days and 20 days after 
dsRNA treatment, respectively [17]. The increased protection (in 
terms of  % survival as well as duration of  protection) observed in 
the present study compared to the previous studies (Table 1) may 
have been due to the fact that four WSSV genes were targeted 
simultaneously in the present study, as opposed to targeting of  a 
single WSSV genes [20, 25, 29, 17]. While two of  the gene targets, 
vp28 and vp19 encode structural proteins, the other two gene tar-
gets rr2 and tk-tmk encode proteins involved in DNA replication. 
The simultaneous targeting of  these two different sets of  genes 
with broad functional characterisitics perhaps more fully inhibited 
viral replication which improved efficacy of  the treatment, since 
WSSV was not detected among the surviving shrimp from these 
treatments.

The present study also sought to address another key question 
towards developing an RNAi-based therapeutic, which is whether 
it is best to provide a single large dosage or multiple small dosages 
of  the RNAi elements. The results demonstrate that delivery of  a 
single large dosage or multiple small dosages of  dsRNA provide 
similar levels of  protection. Since the RNAi elements provided to 
shrimp are expected to undergo degradation over time, the strat-
egy of  delivering small dosages of  RNAi elements regularly ap-
pears to be more pragmatic. In addition, delivery of  large dosages 
of  RNAi elements is much more difficult to accomplish com-
pared to periodic delivery of  small dosages of  dsRNA through 
transgenic bacteria, yeast or algae. This result is also encourag-
ing since it is expected that oral delivery, the preferred route of  
delivery of  this therapeutic, would only be capable of  delivering 
small amounts of  material over an extended period of  time.  This 
would allow a shrimp farmer to apply the RNAi-based therapeutic 
similarly to how they currently administer medicated feeds.

Conclusion

In conclusion, the present study demonstrated that: (i) injection 
delivery of  RNAi elements targeting WSSV genes can provide 
protection to shrimp up to 28 days (ii) RNAi elements remain 
active in shrimp for up to 14 days post-delivery and, (iii) multiple 
small dosages of  RNAi elements are as effective as a single large 
dosage in providing effective protection. The practical implica-
tion of  these results is that they provide valuable information for 
development of  an RNAi-based therapeutic against WSSV.
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