

International Journal of Plant Science and Agriculture (IJPSA)

Application Of Mitscherlich-Bray Equation For Fertilizer Use In Barley Production In The Wolaita Of Southern Ethiopia

Research Article

Mesfin Kassa1*, Wassie Haile2, Fassil Kebede3

¹ Department of Plant Science, College of Agriculture, Wolaita Sodo University, P. Box 138, Ethiopia.
² School of Plant and Horticultural Science, Hawassa University, P. O. Box 05, Hawassa, Ethiopia.
³ Mohammed VI Polytechnic University Lot 660, Haymoulary Rachid 43150, Banguerir, Morocco.

Abstract

The experiments were intended at three locations in order to formulate different levels of NPK fertilizers recommendations of barley based on Mitscherlich-Bray equation at Wolaita zone southern Ethiopia. The experiments were laid out in RCBD with factorial arrangements applying N PK with three replications. Treatments were levels of N (0.23 and 46, P, 0, 10, 20 and 30 and K, 0, 25 and 50 kg ha-1) in all possible combinations. Theoretical maximum yield of barley was calculated by plotting logy versus 1/x (amount of nutrients applied). Fertilizer recommendation for various soil fertility levels and yield target were developed, and their validities were tested by conducting three field verification trials on the same soils. The results showed that although general recommended fertilizer dose resulted in highest yield of barley at all the locations, but total value cost ratio and net revenue were lowest with this fertilizer treatment, and maximum yield treatment was superior in terms of economics of fertilizer. The model considers the interactions of N, P, and K, and soil properties adjusted potential yield of the region which predicts crop yields from chemical soil characteristics, as an indicator of soil fertility.

Keywords: Barley; Nitrogen; Phosphorus; Potassium; Total Value Cost Ratio.

Introduction

Barley (Hordeumvulgare L.) is one of the most important, economically valuable and widely used cereal crops. The crop is used for preparing traditional food and beverage consumptions [13]. The 2013/2014 production year, 1,908,262 tons were produced from a total of 1,019,477 ha of land in Ethiopia [7]. However, in Ethiopia barely yields have been consistently well below the East African and world average yields [7]. In Ethiopia, soil acidity is present a major challenge to bring about increased and sustainable productivity in order to feed the ever-increasing population of the country [1]. Most of the Ethiopian soils including Nitisols are low in soil fertility due to erosion and absence of nutrient recycling. On the contrary, most of the areas used for production of grains especially teff, wheat and barley fall under the low fertility soils [15]. Acidity is a major constraint for barley production in Ethiopia. Hailu and Getachew (2006) [11] reported a triple yield increase by application of 3 t ha-1 of lime compared to no lime at Adadi, southwest Shewa. Shiferaw and Anteneh (2014) reported highest barley grain yield (2,792 and 3,279.3 kg ha⁻¹) was recorded from combined application of NPK at the rate of 46/40/50 kg ha⁻¹ and half the recommended lime rate (3.84 and 0.85 t ha⁻¹ at Chencha and Hagerselam, respectively). A pot experiment conducted on soils collected from different land use systems in West Oromia revealed that maximum mean barley yield for both 50 and 100 mesh lime particle sizes (LPS) were obtained at 6 t ha-1 of lime rate on the forest land, followed by 8 and 10 t ha⁻¹ on grazing and cultivated lands, respectively [5]. Liming of acid soils at Dera (Shemekebele) and Jabitehenan (Manakebele) in northwestern Amhara region based on regional soil laboratory recommendation [4] increased food barley productivity by 50% by application of 2 t ha-1 of lime (3.65 t ha-1 as compared to 2.43 t ha-1 grain

*Corresponding Author:

Mesfin Kassa,

Department of Plant Science, College of Agriculture, Wolaita Sodo University, P. Box 138, Ethiopia. E-mail: mesfine2004@gmail.com

Received: April 16, 2021 Accepted: May 07, 2021 Published: May 19, 2021

Citation: Mesfin Kassa, Wassie Haile, Fassil Kebede. Application Of Mitscherlich-Bray Equation For Fertilizer Use In Barley Production In The Wolaita Of Southern Ethiopia. Int J Plant Sci Agric. 2021;04(02):131-137.

Copyright: Mesfin Kassa[®]2021. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Mesfin Kassa, Wassie Haile, Fassil Kebede. Application Of Mitscherlich-Bray Equation For Fertilizer Use In Barley Production In The Wolaita Of Southern Ethiopia. Int J Plant Sci Agric. 2021;04(02):131-137.

yield without liming). Kiros G and Haile M (2014) [14] reported 133% grain yield advantage by combined application of 1.65 t ha-1 lime and 30 kg ha-1 P as compared to control (no lime and fertilizer) in the central highlands of Ethiopia. The partial nutrient balances revealed that in teff and barley based farming for N and K were clearly negative for teff and barley based farming system in the central highlands of Ethiopia -25 kg N ha-1 year-1 -87 kg K ha⁻¹ year⁻¹ for barley [10]. According to Kiroset al. (2014) [14] the national level depletion rate for N, P and k was calculated at -122 kg N ha-1 year-1, -13 kg P ha-1 year-1 and -82 Kg K ha-1 year-1, respectively. According to Astatkeet al. (2004) [2] proved a sharp increase in barely grown on Vertisols with an application of 50 kg ha-1 K2SO4 and KCl, respectively. Potassium uptake and availability for plant growth and development vary depending on environmental influences associated with a particular set of growing conditions. Soil acidity and deficiency of nutrients, particularly P and K are the key soil related constraints that account for low yield of barley in Wolaitazone of southern Ethiopia [15]. The soil pH at the testing sites of Wolaita area ranged from 5.3 to 5.6 crop land and the concentrations K was 0.32 to 0.45Cmol_kg⁻¹ [15, 17]. Likewise [15] reported that K had no eject on crop when applied without N, but had a significant eject on the yield of crop when applied with P fertilizer. The yield response obtained may be linear, exponential or curvilinear. It was for the first time a mathematical equation was used to find the relationship between the yield and applied nutrients. The Mitscherlich-Bray equation can be used as a tool for estimating fertilizer requirements of a crop from soil test values because it relates crop yield, soil nutrient level, and applied fertilizer levels in such a way that impact of soil fertility level on crop yield is taken into account. The present study was designed with following the objectives [5, 6].

To express fertilizer recommendation for barley on the basis of Mitscherlich-Bray equation.

To verify and compare the soil test-based fertilizer recommendation with those of site-specific recommendation based on Mitscherlich-Bray equation interms of barley response and economics of fertilizer use.

Materials and methods

Description Of Experimental Sites

The study was conducted in Kokate, Doga Mashido and Gurimo Koyisha, Wolaita Zone, southern of Ethiopia (Figure 1). The experimental sites are located from 6°53'.03"N and 37° 48'50.60"E, 6°53'20.3"N and 37°37'40.8"E, 6°57'15.3"N and 37°44'49.9"E, Kokate, Doga Mashido, Gurimo Koyisha, respectively, with an altitude range of 1900-2132 meters above sea level. The long-term weather information at experimental sites shows average annual rainfall of 1149 mm with bimodal distribution pattern giving rise

to two distinct seasons. The short rains (Belg season) is between March and May, whereas the heavy summer rains (Meher season) is between June and October, with a peak in August. The mean annual temperature is 20 °C (NMA, 2016) [17].

Experimental Design and Treatments

The experiment was laid out in randomized complete block design (RCBD) with replicated three times of three nutrients three rates for N (0, 23, 46 kg ha-1) and K (0, 25, 50 kg ha-1) and four rates for P (0, 10, 20 and 30 kgha-1). The total treatment combinations and the rates of P are basis of common practices of fertilizer application on barely production in the Wolaita. The size of each plot will be 3 m x 3 m (9 m²) and the space between plots and blocks were 1m and 1.5 m, respectively. All doses of P (triple superphosphate) and K (potassium chloride) were applied as basal dressing at sowing, while the N (urea) was applied split form, one-half applied at sowing and the other half at early booting. In all plots, the barley variety HB1307 was sowing at a rate of 100 kg ha-1 on July 30 and harvested on November 17. The harvesting plants was air-dried and weighed to determine aboveground dry matter. Grain as separated from straw manually and weighing to determine grain yield [9, 16].

Soil Laboratory Analysis

Soils at all experimental sites were sampled before sowing; soils were sampled from 0-20cm depth from 108 spots of the experimental field. All samples were then air-dried, ground to pass a 2-mm sieve and stored. Proceeding to analysis, soil samples of the same depth, from different replicates and collected soil samples were composited to one sample and air-dried, ground and sieved using 2 mm sieve [20, 22]. Then the composite soil sample was analyzed for the determination of soil particle size, Soil pH in water in ratio of 1:2.5, organic carbon content, total nitrogen, cation exchangeable capacity, available phosphorus, exchangeable Ca, Mg and K exchangeable acidity, available Fe, Mn, Zn and Cu were extracted by diethylenetriaminepentaacitic acid (DTPA) method.

Plant Laboratory Analysis

Ten non-boarders barley plant rows per plots were randomly selected from each plot for grain and straw analysis. The grain and straw of N, P and K contents were determined by wet acid digestion procedure as suggested by FAO (2008). The nutrients uptake by straw and grain were calculated by multiplying nutrients contents by straw and grain yield (kg ha⁻¹). Total nutrients uptake, by whole biomass was calculated by summing up the nutrients uptake of grain and straw. Nutrients use efficiency were calculated using procedures described by [8].

Barley yields were recorded at harvested and the data subjected to

Figure 1. Location map of study sites.

Demonstration	Unite		Deferre			
Parameters		Gurimo Koyisha	Doge Mashido	Kokata	Keierence	
pH (in H ₂ O) (1.2.5)		6.70	6.33	5.17	Jackson (1973)	
pH (in KCl)		5.20	6.40	4.67		
Organic Carbon	%	0.98	2.83	1.76	SahlemdhinSertsu (1999).	
Sand	%	24	28	39	Bouyoucos (1962)	
Silt	%	30	44	44		
Clay	%	46	28	17		
Textural class		Clay loam	Clay	Clay		
Total N	%	0.12	0.12	0.14	Bremner&Mulvaney(1982)	
Available P	mg kg-1	17.7	17.32	17.29	Bray & Kurtz (1945)	
Available K	mg kg-1	192	136	180	Morgan (1941)	
CEC	Cmolckg ⁻¹	17	24	16	Black (1965)	
Exchangeable Ca	Cmolckg ⁻¹	10.8	11.8	9.8	SahlemdhinSertsu (1999).	
Exchangeable Mg	Cmolckg ⁻¹	5.25	5.94	5.44	SahlemdhinSertsu (1999).	
Exchangeable K	Cmolckg ⁻¹	0.5	0.45	0.41	SahlemdhinSertsu (1999).	
Exchangeable acidity	Cmolckg ⁻¹	0.48	0.48	0.63	Pansuet al. (2001)	
Available Fe	mg kg ⁻¹	112	105	202	Lindsay &Norvell (1978)	
Available Cu	mg kg-1	10.6	11.4	10.4	Lindsay &Norvell (1978)	
Available Zn	mg kg-1	10.6	8.4	14.3	Lindsay &Norvell (1978)	
Available Mn	mg kg-1	114	110	138	Lindsay &Norvell (1978)	

Table 1. Soil physicochemical properties of experimental sites before planting.

Mitscherlich-Bray equation. The following parameters were calculated [21].

 $Log (A-y) = log A - c_1 b - cx - (1)$

Where A = % theoretical maximum yield; $y = actual yield in kg ha^{-1}$; $b = native soil test value in kg ha^{-1}$; $x = fertilizer nutrient applied in kg ha^{-1}$; c1 and c = constants, i.e., efficiency of soil and fertilizer nutrient, respectively. Following parameters were calculated from Equation (1).

A. Theoretical maximum yield by plotting log y against 1/xB. Constants c1 and c for N, P and K separately

 $c_1 = \log A \cdot \log(A \cdot y_0) / b$ ------ (2)

Where y_o = yield obtained from control plots

 $c = (\log A - c_1 b) = \log(A - yx)/x - \dots (3)$

Where yx= yield obtained at fertilizer dose x

C. Site specific recommendation of fertilizer N, P and K for barley at different levels by following formula.

 $x = \log(A - c_1 b) - \log(A - yx) / c - (4)$

Economic Analysis

The field verification trials on barley was also conducted at the three locations to know the utility and comparative financial advantage of Mitscherlich-Braybased fertilizer recommendation over generalized fertilizer recommendation based on soil test values. The economic analysis was performed to compare the relative costs and returns for each system. Net return and gross benefit was calculated according to the formula given by CIMMYT (1988) was used for economic appraisal.

Results and Discussions

From the barley yields obtained at three locations"y, 1/x,c,,c, and c_1/c " ratios were calculated Ranganathan et al. (1969) for various N, P and K fertilizer levels (Table 2). The yields increased with increase in the rates of N, P and K application but the increases were greater due to N application as compared to P and K application. Theoretical maximum yields of barley were 4215, 4753 and 3714 kg ha⁻¹ respectively for P, K and K sequence in three experiments sites (Doga Mashido, Kokate and Gurimo Koyisha) (Table 2). The c₁value was found to be 0.00706, 0.01141 and 0.010931 for N, 0.01598, 0.01604 and 0.010591 for P and 0.01043, 0.01704 and 0.01766 for K series, in the three sites respectively. The c, values for N were smaller than that of P and K at two sites (Doga Mashido and Kokate) indicating less contribution from soil N while more contribution from soil P and K for the growth of barley. On other hand, soil N althoughless contribution than K at Gurimo Koyishasites. The ratio of c_1/c was found to be low for N series experiment (0.20) while it was more in the case of P (0.4973) and K series (0.511) at experiment sites (Gurimo Koyisha and Doga Mashido) indicating a higher response to fertilizer N than that of fertilizer P and K. These results are in line with those noted by other worker [19, 21]. Utilizing the mean c₁ and c values, fertilizer N, P and K requirements were computed for common range of soil testvalues from 0.12% to 0.14 N %, 17.29 -17.70 mg P kg⁻¹, 136 -190 mg kg K ha⁻¹ (Table 1). The fertilizer recommen-

Treatments	Yield	logy	1/x	с,	c	C ₁ /c	
K and de heib	(kg na)		D		l	<u> </u>	
K applied (kg na)	097	2 00 20	Doga Mashido			1	
0	980	2.9938	0.001001	0.01045	-	0.2020	
50	1265	3.1021	0.000790	-	0.03442	0.3030	
50	1490	3.1/31	0.000579	-	0.03499	0.2980	
Mean	1247	-	-	-	-	0.3005	
Theoretical maximum yield	3/13	-	-	-	-		
TSP applied (kg ha ⁻¹)							
0	986	2.9938	0.001001	0.01598			
10	1252	3.0971	0.000367		0.03249	0.4918	
20	1357	3.1325	0.000156		0.03424	0.4667	
30	1524	3.1829	0.000656		0.03482	0.4589	
Mean Theorem and A	12/9./5					0.4724	
Theoretical maximum yield	4215						
Nitrogen applied (kg ha'')	007	2.0020	0.004004	0.00707			
0	986	2.9938	0.001001	0.00706			
23	1346	3.1291	0.000743		0.03415	0.2067	
46	1498	3.1755	0.000667		0.03497	0.2042	
Mean	12/6./					0.2042	
I heoretical maximum yield	3/21	I		1		1	
K applied (kg ha ')	1202	2.0002	Kokata	0.04704		1	
0	1203	3.0802	0.00085	0.01704	0.027/1	0.4520	
50	1/91	3.2695	0.000538		0.03781	0.4550	
Meen	1617	3.2083	0.000558		0.05568	0.4630	
Theoretical maximum vield	4753					0.4035	
TSP applied (kg ha ⁻¹)	4755	1					
0	1203	3.0802	0.00083	0.01607			
10	1428	3.1547	0.0007		0.03976	0.4041	
20	1640	3.2148	0.000609		0.03510	0.2289	
30	1645	3.2161	0.0006079		0.03567	0.2252	
Mean	1479					0.2860	
Theoretical maximum yield	4521						
Nitrogen applied (kg ha ⁻¹)							
0	1203	3.0802	0.00083	0.01141			
23	1752	3.2435	0.00057		0.03509	0.3251	
46	1900	3.2787	0.000526		0.03585	0.3182	
Mean	1618	i	1	1	İ	0.3216	
Theoretical maximum yield	4752	İ	İ				
Treatments	Yield(kg ha-1)	logy	1/x	c,	c	C ₁ /c	
K applied (kg ha-1)			Gurimo Koy	isha			
0	815	2.911	0.001226	0.01766			
25	1271	3.1041	0.0007867		0.03423	0.5159	
50	1396	3.1448	0.000716		0.03479	0.5076	
Mean	1161					0.5117	
Theoretical maximum yield	3714						
TSP applied (kg ha-i)							
0	815	2.911	0.001226	0.016591			
10	1100	3.0413	0.000909		0.032077	0.5173	
20	1324	3.1218	0.0007552		0.033765	0.4914	
30	1463	3.1652	0.0006835		0.034322	0.4833	
Mean	1175					0.4973	
Theoretical maximum yield	3224						
Nitrogen applied (kg ha ⁻¹)							
0	815	2.911	0.0001226	0.010931			
23	1477	3.1693	0.000677		0.034949	0.3128	
46	1613	3.2076	0.0006199		0.034310	0.3185	
Mean	1301					0.3156	
Theoretical maximum yield	3284						

Table 2. Barley yield and efficiency coefficients of soil and N, P and K fertilizer.

dations provide a choice for choosing a yieldtarget in accordance with the monetary aspects, thus providing a dual benefit to he

farming community.

Treat-	Actual	Adjust-	Fer-	Total	Total	Net	Gross	Nutrients use efficiency		
ment	yields	ed grain	tilizer	variable	revenue	revenue	net	AE	RE	PE
	(kg ha ⁻¹)	yield	cost (Birr)	cost (TVC) (Birr)			rev- enue	(kg kg-1)	(%)	(kg kg-1)
Kokate										
K0	1203	1082.7	1082.7	0	0	6496.2	6496.2	0	0	0
K25	1791	1612.17	900	1060	9673.02	8613.02	8.12	23.53	61.75	38.12
K50	1856	1670.49	1800	1960	10022.94	8062.94	4.11	13.06	45.86	28.48
P10	1428	1285.47	900	1060	7712.82	6652.82	6.27	22.53	57.24	39.38
P20	1640	1476.27	1800	1960	8857.62	6897.62	3.51	21.86	56.08	38.98
P30	1645	1480.5	2700	2860	8883	6023	2.11	14.73	40.54	36.34
N23	1752	1576.8	630	790	9460.8	8670.8	10.97	23.86	57.73	41.33
N46	1900	1710.27	1260	1420	10261.62	8841.62	6.22	10.81	52.25	20.68
Gruimo Koyisha										
K0	815	733.77	0	0	4402.62	4402.62	0	0	0	0
K25	1271	1143.9	900	1170	6863.4	5693.4	4.86	18.22	69.09	26.37
K50	1396	1256.85	1800	2070	7541.1	5471.1	2.64	11.62	49.56	23.44
P10	1100	990.54	900	1170	5943.24	4773.24	4.07	28.53	53.45	53.37
P20	1324	1191.6	1800	2070	7149.6	5079.6	2.45	25.43	50.06	50.79
P30	1463	1317.15	2700	2970	7902.9	4932.9	1.66	21.6	43.30	49.88
N23	1477	1329.3	630	900	7975.8	7075.8	7.86	28.76	65.59	43.84
N46	1613	1451.7	1260	1530	8710.2	7180.2	4.69	17.34	57.04	30.39
				Doge M	Iashido					
K0	986	2313	0	0	13878	13878	0	0	0	0
K25	1265	2314.8	900	1170	13888.8	12718.8	10.87	11.17	38	29.4
K50	1490	2314.8	1800	2070	13888.8	11818.8	5.7	10.08	37.39	26.95
P10	1252	2339.1	900	1170	14034.6	12864.6	10.99	26.63	60.22	44.23
P20	1357	2357.1	1800	2070	14142.6	12072.6	5.83	18.55	43.18	42.95
P30	1524	2368.8	2700	2970	14212.8	11242.8	3.78	17.93	38.44	40.20
N23	1477	2727	630	900	16362	15462	17.18	11.31	54.77	20.65
N46	1613	3059.1	1260	1530	18354.6	16824.6	10.99	11.13	54.08	20.58

The site specific recommendations of fertilizer N, P and K based onMitscherlich-Bray equation were calculated for obtaining the predictable yield of barley (Table 2). The results revealed that as the number of rates increased; there was increase in fertilizer N, P and K requirements of barley. The theoretical maximum yield obtained from K (4753kg ha⁻¹), P (4215kg ha⁻¹)and N (3714 kg ha-1) Kokate, Doga Mashido and Gurimo Koyisha, respectively. The results of two confirmation trials (Table 3) revealed that the highest barley grain yields of 1900 kg ha-1 was obtained under N46 of theoretical maximum yield treatmentin Kokate. However, theoretical maximum yield treatment was significantly superior to all other treatments, which was on par at both the locations. This treatment also resulted increased with increase use efficiencies inbarleyyields at all the locations. Considering the barley yields obtained and the economics offertilizer use of theoretical maximum yield treatment based on Mitscherlich-Bray equation was superior to general recommended dose and asper soil test basis. Maximum yield was obtained with recommended fertilizerdose, but TVC value was very higher for treatments receiving N46 kg ha-1..All the parameters relevant to economics of fertilizer such as net return, and total net return, were higher for N46 of maximum yield treatment at all locations (Table 3). This result line with Rashid (2010) [18] observed that in limited moisture supply situations, lower levels of nutrient application (50 kg N and 25 kg P_2O_5 ha⁻¹) were better and economical than higher fertilizer doses; fertilizer use efficiency is generallylower under rainfed conditions as compared with irrigated ones [12]. These results are also in agreement with the findings of Sonar and Babhulkar (2002) [21] who observed that fertilizer use on the basis of 80% theoretical maximum yield wasbetter than general recommendation of fertilizer for wheat in India.

Conclusion

In this study, model has been established to estimate soil nutrient supply from soil chemical properties for barley in the Wolaita zone, southern Ethiopia, to estimate indigenous nutrient supplying capacity of soils, N, P, and K requirements for barely and their use efficiencies of nutrients as affected by fertilizer levels, it is strongly needed that a system of site-specificnutrient management should be adopted instead of general recommendations in

Mesfin Kassa, Wassie Haile, Fassil Kebede. Application Of Mitscherlich-Bray Equation For Fertilizer Use In Barley Production In The Wolaita Of Southern Ethiopia. Int J Plant Sci Agric. 2021;04(02):131-137.

Figure 2. Theoretical maximum yield of barley in field experiments at three locations.

order tomake the use of fertilizer more rational and economical. It will result in increased fertilizer use efficiency and saving of this costly input. Application of higher rates of fertilizers as has been practice in past decade is not economically profitable because of high prices offertilizers. Consequently, the data are employed calibration exercise, so as to widen the application of Mitscherlich-Bray Equation. Finally, validations have done using input and yield date from fertilizer trials in other party of Wolaita zone and a sensitivity analysis than reveals to what extent changes in input parameterization of nutrient requirements of barley affect mode output.

References

- Deressa A. Evaluation of soil acidity in agricultural soils of smallholder farmers in South Western Ethiopia. Science, Technology and Arts Research Journal. 2013 Dec 17;2(2):01-6.
- [2]. Astatke A, Mamo T, Peden DO, Diedhiou M. Participatory on-farm conservation tillage trial in the Ethiopian highland Vertisols: The impact of potassium application on crop yields. Experimental Agriculture. 2004 Jul 1;40(3):369.
- [3]. Ayele T. Potassium availability under banana-based land use systems in Ab Chamo Lake Basin, South-west Ethiopia. International Journal of Scientific Research and Reviews. 2013;2(2):94-108.
- [4]. Hassen A, Tafere M, Tolla M, Dagnew S, Ahmed A, Worku A. Best fit Practice Manual forFood barley Production. BDU-CASCAPE working paper. 2015;7.
- [5]. Chimdi A, Gebrekidan H, Kibret K, Tadesse A. Response of barley to liming of acid soils collected from different land use systems of Western Oromia, Ethiopia. Journal of Biodiversity and Environmental Sciences. 2012;2(7):1-3.
- [6]. CIMMYT Economics Program, International Maize, Wheat Improvement Center. From agronomic data to farmer recommendations: an economics

training manual. CIMMYT; 1988.

- [7]. CSA (Central Statistical Agency). Agricultural sample survey for the 2013/2014 crop season. Volume I Report on Area and production of major crops private peasant holdings, meher season. Statistical Bulletin, FDRE/ CSA, Addis Ababa, Ethiopia. 2014.
- [8]. Fageria NK, Filho MB. Dry-matter and grain yield, nutrient uptake, and phosphorus use-efficiency of lowland rice as influenced by phosphorus fertilization. Communications in soil science and plant analysis. 2007 May 1;38(9-10):1289-97.
- [9]. Motsara MR, Roy RN. Guide to laboratory establishment for plant nutrient analysis. FAO Fert. Plant Nutr. Bull. 2008;19.
- [10]. Haileslassie A, Priess JA, Veldkamp E, Lesschen JP. Smallholders' soil fertility management in the Central Highlands of Ethiopia: implications for nutrient stocks, balances and sustainability of agroecosystems. Nutrient Cycling in Agroecosystems. 2006 Jul;75(1):135-46.
- [11]. Hailu T, Getachew B. Eragrostistef (Zuccagni) Trotter. In Plant Resources of Tropical Africa 1. Cereals and pulses. Prota Foundation, Wageningen/ Backhuys Publishers, Leiden/ CTA, Wageningen, Netherlands. 2006; 68-72.
- [12]. Islam M, Mohsan S, Ali S, Khalid R, Afzal S. Response of chickpea to various levels of phosphorus and sulphur under rainfed conditions in Pakistan. Romanian Agricultural Research. 2012 Jan 1;29:175-83.
- [13]. Muhe K, Assefa A. Diversity and agronomic potential of barley (Hordeum vulgare L.) landraces in variable production system, Ethiopia. World Journal of Agricultural Sciences. 2011;7(5):599-603.
- [14]. Kiros G, Haile M, Gebresamuel G. Assessing the input and output flows and nutrients balance analysis at catchment level in Northern Ethiopia. Journal of Soil Science and Environmental Management. 2014 Jan 31;5(1):1-2.
- [15]. MesfinKassa, FassilKebede, Wassie Haile. Effect of Nutrient Supply on Nutrient Use Efficiency and Yield of Barley (Hordeumvulgare L.) in Wolaita, SouthernEthiopia. Int.J.Curr.Res.Aca.Rev. 2018; 6(12): 48-58.
- [16]. Morgan MF. Chemical diagnosis by the universal soil testing system. Conn Agri. Expt. Statistical (New Haven), Bull. 1941;450(16):5.
- [17]. NMA (National Meteorological Agency). National Meteorological Agency, Hawassa Meteorological Service Center, Ethiopia. 2016.
- [18]. Rashid A. Agro-economic feasibility of fertilizer use for wheat cultivation in rainfed regions of Pakistan. Journal of Agricultural Research. 2010 Sep 1;48(3):353-59.

Mesfin Kassa, Wassie Haile, Fassil Kebede. Application Of Mitscherlich-Bray Equation For Fertilizer Use In Barley Production In The Wolaita Of Southern Ethiopia. Int J Plant Sci Agric. 2021;04(02):131-137.

- [19]. Sonar KR, Babhulkar VP. Application of Mitscherlich–Bray equation for fertilizer use in wheat. Communications in soil science and plant analysis. 2002 Nov 1;33(15-18):3241-9.
- [20]. Boke S, Fekadu A. Lime and NPK effect on soil acidity and yield of barley in different acid soils of southern region, Ethiopia. International Journal of Natural Sciences Research. 2014;2(7):113-22.
- [21]. Sonar KR, Babhulkar VP. Application of Mitscherlich–Bray equation for fertilizer use in wheat. Communications in soil science and plant analysis. 2002 Nov 1;33(15-18):3241-9.
- [22]. Srivastava S, Subba Rao A, Alivelu K, Singh KN, Raju NS, Rathore A. Evaluation of crop responses to applied fertilizer phosphorus and derivation of optimum recommendations using the Mitscherlich–Bray equation. Communications in soil science and plant analysis. 2006 Jun 1;37(05-06):847-58.