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As one of  us has stated many years ago, “shock is a significant 
and sustained loss of  effective circulating blood volume [1]. It 
will eventuate in hypoperfusion of  critical peripheral tissues, 
thus leading to a deficit in transcapillary exchange function in 
critical organ regions [1-3]. Clinically, there are five major types of  
circulatory shock: cardiogenic; septic; distributive; anaphylactic; 
and hypovolemic [1-3]. Hypovolemic shock (HS) is, primarily, 
due to a marked decrease in venous return, falling arterial blood 
pressure, and ventricular preload, and usually is caused by 
hemorrhage, dehydration, excessive diarrhea, trauma, excessive 
fluid loss from severe burns, increased positive intrathoracic 
pressure, excessive urinary fluid loss resulting from diuretics, side 
effects of  many chemotherapeutic agents and radiation in cancer 
patients, or depressed vasomotor tone in the microcirculation [1-
3]. 

Septic shock is often termed “a vasodilatory shock” and is a 
leading cause of  morbidity and mortality in the USA and Europe 
[1-4]. Septic shock and traumatic shock both involve substantial 
fluid loss, and often are treated with catecholamines, inotropic 
agents and corticosteroids in an attempt to maintain arterial 
blood pressure, venous return and distribution to key peripheral 
tissues and organs [1-5]. However, this often results in decreased 
cardiac output, intense ischemia in multiple organ regions and/or 
tachyphylaxis to the drugs and worsening of  the patient, increased 
morbidity and mortality.

Whatever circumstances initiate the “low-flow state”(hemorrhage, 
trauma, sepsis, etc.) and whatever the effects these initiating 
circumstances may have on circulating blood volume and cardiac 
output, the overall vasomotor response results in a functional 

decrease in transcapillary exchange in the peripheral tissues 
[6, 7]. This is the all-important trigger mechanism that sets in 
motion the chain of  events which, if  not promptly corrected, will 
generate the refractory and ultimately irreversible characteristics 
of  the shock syndrome, that is, inadequate tissue blood flow 
and the attendant ischemia resulting in multiple microcirculatory 
organ-tissue failure. The strategic role of  microcirculatory failure 
in “low-flow states” is firmly supported by voluminous studies 
which demonstrate that any therapy which directly or indirectly 
improves local tissue blood flow is beneficial [1-9]. But most of  
these studies do not emphasize drugs or techniques that are either 
suitable or reliable for clinical use in a “tried-and-true-manner”.

Many different drugs are commonly used to raise arterial blood 
pressure in states of  circulatory shock; these being referred to 
as “vasopressors”. Although the idea to utilize these agents 
to raise arterial blood pressure is, at first glance, a reasonable 
hemodynamic basis for their use, they are often discarded because 
while they often raise blood pressure, they do not effectively increase 
tissue perfusion [1-3, 8, 9]. The net effects of  these vasopressors 
on the pressure-resistance relationships (P-R) which determine 
blood flows in the periphery are often incompatible with either 
increased blood flow or increased survival of  the patient. Despite 
these drawbacks new vasopressors continually are searched-
for. What physicians, surgeons, and ER people often forget is 
that in “low-flow states”, local tissue blood flows are primarily 
conditioned by postarteriolar microcirculatory dynamics [1-3, 9]. 
Effective drugs must be able to pharmacologically modify the 
postarteriolar muscular microvessels (metarterioles, precapillary 
sphincters, and venules) to sustain effective capillary blood flows, 
distribution, and outflow (i.e., venous return) [6, 7, 9]. For more 
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than 50 years, our laboratories have used this principle to design 
and implement the use of  “selective vasopressor agents” [10-36]. 
We have done this by altering or directing the synthesis of  new 
drugs by changing the molecular structures of  vasopressin (VP) 
and oxytocin [ OT] [10-36].

Until recently, neither VP nor OT were given little serious thought 
as useful vasoctive drugs; VP because of  its well-documented 
coronary and unselective peripheral constrictor actions [6-9], 
and OT because of  its very “iffy” cardiovascular actions. VP has 
been shown, in numerous animal and human studies, to cause 
reductions in coronary arterial flows that become severe, resulting 
in ischemia [37-45]. However, some studies suggest that this may 
not either happen or VP may induce vasodilatation (in pulmonary 
and cerebral vascular beds [45], despite evidence to the contrary 
[37-45]. This controversy might be related to different actions on 
the major, surface coronaries versus the smaller arterioles deep 
within the walls of  the ventricles. Another factor that has to be 
considered in all forms of  circulatory shock, is that there is a 
massive release of  VP from the paraventricular and supraoptic 
nuclei of  the hypothalamus which often will reach levels in the 
blood which are from 20-200 times normal [45]. In addition, it 
has been demonstrated that the heart muscle has the capacity 
also to release VP [44, 45]. Added to this is the number of  
studies which have shown that administration of  VP in shock 
added to the endogenous release of  VP often causes decreases in 
cardiac output and decreases in perfusion of  the intestinal tract, 
kidneys and liver [43-45]. These affects can and often lead to life-
threatening situations. On a molar basis, VP is one of  the most 
powerful peripheral vasoconstrictor agents, even more powerful 
than angiotensin II [43-45]. Most arteries and arterioles (including 
coronary vessels), in the body, show greater contractile sensitivity 
to VP compared to angiotensin II, in terms of  both affinity 
and intrinsic activity [19, 21, 33, 35, 36]. However, evidence has 
accumulated to suggest some synthetic analogs of  VP and OT 
may not cause coronary vasoconstrictor effects, and may actually 
produce coronary arterial relaxation of  the vascular smooth 
muscle cells in intact human hearts, resulting in vasodilator 
actions [46-49]. 

Six synthetic analogs of  VP, namely [2-phenylalanine, 
8-lysine] vasopressin (PLV-2), [8-ornithine] vasopressin (OV), 
[2-phenylalanine, 8-ornithine] vasopressin (POV), [3-Ileu, 
8-ornithine] vasopressin (ILV), 1-deamino-[2-phenylalanine,8-
arginine] vasopressin (DAVP) and [2-phenylalanine, 3-isoleucine, 
8-ornithine] vasopressin (PIOV) as well as at least four analogs 
of  OT (i.e., [8-ornithine] oxytocin; [8-arginine] oxytocin; 
[4-threonine] oxytocin; and 1-deamino-dicarba-oxytocin) 
may have significant vasodilator properties on the coronary 
circulation and exert ceilings on vasoconstriction in the peripheral 
microcirculation along with selective actions on the muscular 
venules in the latter [[12-36, 49]; unpublished findings]. Our 
ongoing animal (i.e., rat, rabbit, and dog) and human studies have 
determined the functional contributions to, and interactions with, 
the amino, phenolic , hydroxyl, and aromatic groups as well as 
basicity in positions 1,2,3 and 8, respectively, to or with hormone-
receptor affinity and intrinsic (contractile/relaxant) activity, were 
determined by analyzing the dose-response curves of  10 VP and 
OT octapeptides lacking one or more of  these functional groups. 
The findings, so far, demonstrate that: 1) the structure-action 
relationships for the peptide-induced responses ( i.e.,contractions/
relaxations) on the microvessels and various arterial blood 

vessels (including the coronaries) vary with the particular micro-
and macrovessel type (i.e., arteriole, precapillary sphincter, and 
venule) [[12-36] unpublished findings]; 2) the amino, phenolic 
and aromatic groups in positions 1,2, and 3, respectively, are not 
only important for hormone-receptor affinity but intrinsic activity 
as well [16, 17, 19, 22-27, 33, 35, 36]; 3) the potency (EC 50) 
values for arginine-VP as well as well as the potencies and intrinsic 
activities of  synthetic VP and OT analogs varied with the type of  
micro-and macrovessel examined [16, 17, 19, 22-27, 33, 35, 36]; 4) 
many of  the VP and OT analogs (e.g., PLV-2, DVAP, POV, PIOV, 
[5-ornithine]-oxytocin , [4-threonine]-oxytocin ) produced various 
degrees of  vasodilatation in intact and isolated coronary arteries, 
including in humans [[33, 35, 36, 49]; unpublished findings] ; and 
5) several of  the modified octapeptides significantly improved 
permanent survival in animals and humans subjected to different 
forms of  circulatory shock i.e., hemorrhage, trauma, sepsis, and 
combined injuries) [11, 12, 14, 15, 18, 23, 31, 32, 49]; unpublished 
findings]. Examination of  the microvascular beds (i.e., intestine, 
skeletal muscle, brain, and myocardium) using high-resolution, 
quantitative in-situ microscopy with TV-image intensification 
(up to 3,600 x times normal), 31P-nuclear magnetic resonance 
spectroscopy, and optical spectroscopy showed that many of  the 
VP and OT analogs, unlike norepinephrine, phenylephrine or 
angiotensin II, restored near-normal vasomotion, increased true 
capillary blood flows, prevented loss of  venular vasomotor tone, 
increased tissue oxygenation, prevented loss of  mitochondrial 
cytochrome oxidase, and prevented stasis of  blood cells in 
the postcapillary vessels, thus maintaining a “vis-a-tergo” ( 
maintenance of  venous return to the heart) despite fluid and 
blood loss. 

Pharmacologic manipulation of  the functional behavior of  
organ systems is by no means a novel or impractical concept; 
it is a well-established objective in clinical pharmacology. Renal 
function, for example, can be manipulated with almost exquisite 
precision. Comparable manipulation of  the terminal vascular 
bed for correction of  impaired tissue blood flow is also a long-
recognized objective of  circulatory shock and “low-flow state” 
therapy. Failure of  microcirculatory-dependent tissue perfusion 
is the accepted primary event leading to irreversibility. The 
cardiovascular dynamics which initiate and sustain low-flow relate 
essentially to an untenable imbalance in the P-R relationships in 
critical portions of  the peripheral circulation. It, thus, follows 
that use of  vasotropic drugs which can rectify the unphysiologic 
P-R factors constitutes a valid therapeutic principle. The practical 
problem in shock therapy is not one of  principle of  therapy, 
but of  availability of  the appropriate vasoactive agents. Use of  
this principle outlined, here, has been hampered by the lack of  
selective vasotropic agents, based on quantitative microcirculatory 
studies, as shown by our group using diverse animal models of  
shock, trauma and sepsis. The treatment of  circulatory shock 
with vasoactive drugs could be more effective than present 
circumstances if  agents with more selective actions like VP and 
OT analogs on the heart and on different types of  vessels in the 
peripheral circulation were used. We believe, at this point in time, 
the outlook for effective and precise pharmacologic manipulation 
of  the cardiovascular system, in circulatory shock states, is very 
much alive and optimistic. It is our hope that clinical trials, in 
shock and trauma patients, with some of  the promising VP and 
OT analogs discussed, herein, will get underway in the near future.
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