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Introduction 

Like most healthy tissues, cancer stem cells are hierarchically or-
ganized at a cellular level and exist in the form of  small fraction 
of  subpopulations that are primarily responsible for tumor initia-
tion, maintenance and propagation [1-3]. Accordingly, this small 
fraction of  tumor subpopulation is characterized by its ability to 
drive prolonged maintenance and sustained self-renewal, a mech-
anism that is essential for tumor growth and differentiation [4,5]. 
This small fraction of  subpopulation drives self-renewal through 
asymmetrical cell division to produce two daughter cells, one of  
them is potentially able to differentiate and ultimately forms the 
tumor mass, whereas the second one maintains its stemness prop-
erties so that can function as a CSC [6,7].

The hypothesis of  CSC suggests that neoplastic clones are main-
tained by a small fraction of  cells with stem cell properties [8]. 
Cancers are thought to arise from stem cells and are expected 
to undergo the same progeny, differentiation and progression 
observed in normal tissues [9]. Tumor metastatic dissemination, 
resistance to chemo- and radiotherapy, and recurrence thought to 
be attributed to CSCs [10-12]. The treatment regimens of  mel-
anoma patients are of  limited benefit, particularly, in advanced 
stages since available treatments can primarily target tumor bulk, 
but not MSCs [13]. The existence of  MSCs phenotype has been 
confirmed in a small fraction of  cells derived from either tumor 
biopsies or from established tumor cell lines [14-17]. These small 
fractions can form” melanoma spheroids” when allowed to grow 
in a specific stem cell medium[18] and exhibit self-renewal ac-
tivity in vitro as well as in vivo [17-20]. Melanoma spheroids are 
able to differentiate into different cell types including, those of  
mesenchymal-lineage besides their tumorigenic potency when 
transplanted into immune-deficient mice [21,22]. MSCs are char-
acterized by the expression of  stem cell maker including, CD20, 
CD133, and CD166 [17], ABCB5 [23], CD146 [24], and Nestin 
[25]. More importantly, the increased expression of  the self-re-
newal transcription factor, Bmi-1, in primary and metastatic tu-
mors [26], is an evidence for CSCs potential in tumor progres-
sion, invasion and metastatic dissemination. The frequent tumor 
recurrence seems to result from the preferential killing of  tumor 
bulk while leaving CSCs behind [27]. Although the development 
of  effective therapeutic modalities against peculiar and multiple 
melanoma antigens still remains a crucial challenge, thus under-
standing the molecular mechanisms underlying MSCs migration, 
invasion, resistance to standard treatments and recurrence may 
help to improve current therapeutic modalities and/or pave the 
way for the development of  new therapeutical management strat-
egy for the tumor treatment.

Abstract

Human malignant melanoma is a highly aggressive tumor which demonstrates heterogeneity and a propensity to drug resistance. 
Despite improved treatment options, patients with advanced malignant melanoma continue have a poor prognosis as measured by 
progression-free and overall survival. The cancer stem-like cell (CSC) hypothesis suggests that neoplastic clones are maintained by a 
small fraction of  cells with stem cell properties. As has been demonstrated with other tumor types, melanoma progression, resistance 
to chemo- and radiotherapy, and recurrence can be attributed to a small fraction of  cells termed melanoma stem-like cells (MSCs). 
These MSCs are characterized by a distinct protein patterns and aberrant signaling pathways, which are either in a causal or consequen-
tial relationship to tumor progression, drug resistance and recurrence. This review focuses on the mechanistic role of  MSCs leading to 
tumor progression and metastasis, resistance and recurrence. Understanding the molecular mechanisms underlying MSCs migration, 
invasion, resistance to standard treatments, and recurrence may help to improve current therapeutic modalities and/or pave the way 
for the development of  new therapeutical management strategy for tumor treatment.
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Malignant Melanoma Characteristics And Epide-
miology

Human malignant melanoma is a highly metastatic cancer type 
that is substantially resistant to standard therapeutic modalities. 
Although the survival rate of  melanoma patients has been im-
proved over the past decades [28], melanoma risk and overall 
mortality escalate yearly [29] Generally, primary melanomas are 
curable by surgical excision when diagnosed early and thereby the 
number of  patients with regional lymph node infiltrations can be 
decreased [30]. However, the prognosis of  patients with visceral 
metastasis is very poor as evidenced by a median survival rate of  
only a few months [31]. Because of  the therapeutic benefit of  
current treatment regimens in a significant portion of  melanoma 
patients showing poor prognosis, the development of  new thera-
peutic strategies is urgently needed.

The clinical classification of  melanoma is based on the total 
thickness (in millimeters), the mitotic rate, the presence of  ul-
ceration, the depth of  penetration, and metastatic location [32]. 
Whereas, the histological classification defines five distinct stages 
of  melanoma progression including, benign nevi without dysplas-
tic changes, dysplastic nevi, radial-growth phase (RGP), vertical 
growth phase (VGP), and metastatic melanoma [33].

Although melanoma is derived from melanocyte origin, there 
are diverse cell types that can be located within or surrounding 
melanoma lesions. These include endothelial cells, immune cells, 
keratinocytes, and fibroblasts. Thus, before initiating the malig-
nant transformation, melanocytes start to intersperse among ke-
ratinocytes to form an epidermal melanin unit that can transfer 
melanin granules to the keratinocytes [34]. Whereas, keratinocytes 
, in turn, serve as the key regulators of  early stage melanoma cell 
homeostasis and proliferation [35].

Concept of  cancer stem cells (CSC)

The idea that cancer might originate in SC refers back to the 19th 

century’s concept of  "embryonal rests" present in the adult [36-
39]. Over a century later, the similarity between the old belief  that 
cancer arises from embryonal rests and the contemporary view 
that some forms of  cancer originate in adult tissue-specific SC 
has revitalized when leukemia-initiating SC were reported in the 
peripheral blood of  patients with acute myelogenous leukemia 
(AML) [40]. In the meantime, the presence of  SC in breast cancer 
[41,42] , brain cancer [43], ovarian cancer [44], lung cancer [45], 
colon cancer [46,47], head and neck squamous cell cancer [48] and 
prostate cancer [49] has been reported. Also, CD20-positive sub-
population has been identified in melanoma [17]. CD20 is an in-
tegral membrane protein that is first detected on B-lymphocytes; 
and is involved in transmembrane calcium flux, and in cell-cycle 
progression [50]. CD20-positive melanoma cells can grow as non-
adherent spheres in human embryonic growth medium, whereas 
in standard medium they can grow as adherent monolayers. Un-
der appropriate culture conditions, cells from the non-adherent 
spheres could be differentiated into multiple cell lineages, such as 
melanocytic, adipocytic, osteocytic, and chondrocytic [51]. These 
melanoma spheroid cells have been shown to persist after serial 
cloning in vitro and transplantation in vivo, confirming their self-
renewal ability [17,52].

Accumulating evidence supports the existence and the involve-
ment of  CSCs in melanoma initiation, progression, chemoresist-
ance, therapeutic failure and recurrence [17,53,54]. Like normal 
tissues, melanoma is composed of  phenotypically heterogene-
ous cell populations [55]. Whereas, highly aggressive melanoma 
subpopulations are characterized by the expression of  molecular 
signatures similar to those of  pluripotent stem cells [24]. Thus, 
the expression of  the stem cell markers such as, ABCB5, CD133, 
CD166, CD34, nestin, c-kit antigens, cancer testis antigens, bone 
morphogenetic protein (BMP), Notch receptors and Wnt pro-
teins, in addition to their tumorigenic and differentiation poten-
tial has been reported in melanoma subpopulation derived from 
either patients biopsies or from established melanoma cells lines 
[15,23,56]. A proposed model for the possible mechanism of  how 
cancer stem cells arise is outlined in Figure 1.

Figure 1. Proposed model of  how a cancer stem cell does arise. An adult stem cell undergoes genetic and epigenetic altera-
tions, as a consequence progenitor cell can develop to either normal progenitor cell or differentiated cell. The accumulation 
of  a consequent serial of  mutations can drive the fully differentiated cell back to gain stemness properties. The activation 

of  self-renewal genes results in the development stem cells to cancer stem cell.

1. Skin stem cell

2. Progenitor cell

3. Differentiated cell

De-differentiated cell

Self-renewal 
genes turned on

Melanoma stem cell

Self-renewal 
genes turned on

Self-renewal 
genes turned on

Loss of  regulated 
cell division

Normal 
progenitor 
cell

Stem cell

Normal stem 
cell



International Journal of Stem Cell Research and Transplantation. 2014 © 80

Hassan M, et al. (2014). Cancer Stem- Like Cells in Melanoma Progression, Resistance and Recurrence: Significance for Melanoma Treatment, Int J Stem Cell Res Transplant, 02(04), 
78-85.

Mechanisms of  Cancer Stem-Like Cells in Mela-
noma Progression and Metastasis

Metastasis is a process, whereby primary tumor disseminates to 
establish new tumor colonies at distant organ or tissue sites. This 
process is mediated through the migration into the lymphatic sys-
tem and/ or .dissemination through the blood circulation [57,58]. 
Accordingly, melanoma is known to be a highly metastatic can-
cer among solid tumors [59]. Although the clinical significance 
of  melanoma metastasis has been demonstrated, the cellular and 
molecular mechanisms underlying metastatic melanoma progres-
sion are not characterized in detail.

To understand the mechanisms of  tumor metastasis, several 
models and theories have been proposed [60-62]. One of  these 
models based on the clonal selection suggesting that the continu-
ous accumulation of  mutations together with the chromosomal 
imbalances may result in the development of  cancerous cells with 
metastatic properties, particularly, in advanced stages of  tumor. 
Whereas, the other model suggests that the tendency of  tumor 
cells to metastasize thought to be determined in the early pro-
cesses of  tumorigenesis. This theory based on the identifica-
tion of  metastatic features in primary tumor cells or even their 
transformed precursors before the initiation with the neoplastic 
progression. Moreover, functional genomic studies revealed that 
limited subsets of  tumor cells within the primary lesions are pro-
grammed to metastasize to specific organs [63,64]. Thus, in the 
context of  CSC concept, it is plausible that these limited subsets 
of  tumor cells/subpopulations may be attributed to CSCs, and 

thereby have the capacity to initiate tumor formation. Accord-
ingly, some characteristics of  the identified CSCs are identical 
with those of  normal stem cells [65]. These stem cell properties 
are responsible for the mechanisms underlying metastatic process 
of  cancer cells. Also, stromal cell niche or signaling pathways that 
function as key modulators of  normal stem cell proliferation and 
migration have been shown to play an essential role in tumor cell 
invasion and dissemination [66,67]. Moreover, the components 
of  cellular niche have been reported to provide anchoring sites 
for somatic stem cells. As well, the attachment of  somatic stem 
cells to the anchoring sites is orchestrated through mechanisms 
mediated by distinct signaling molecules such as β-catenin, a 
downstream effector of  Wnt signaling pathway [68,69]. Thus, ex-
cessive activation of  the Wnt pathway is mainly associated with 
melanoma progression via mechanism mediated by the enhance-
ment of  the translocation of  β-catenin to the nucleus [70]. The 
disruption of  β-catenin/E-cadherin complexes has been shown 
to be causally linked to the breakdown of  epithelial to mesenchy-
mal transition (EMT) [72]. Thus, the most known key molecules 
that are associated with melanocyte stem cell maintenance and 
melanoma metastasis are Slug and Twist [73,74]. These proteins 
have been reported to play an essential role in the promotion of  
EMT and the induction of  the transcriptional repressors of  E-
cadherin [75]. Accordingly, the crosstalk between Wnt signaling 
factors and the cadherin-catenin adhesion system is an essential 
mechanism that regulates the localization of  normal and mela-
noma stem cells [76]. Also, other molecules such as integrins are 
involved in the local invasion of  melanoma [77] and the regula-
tion of  matrix metalloproteinases [78]. Moreover, the melanoma 

Figure 2. Proposed model for metastatic dissemination of  Melanoma-initiating cells/melanoma stem-like cells (MSC). The 
circulation of  MSC allows it to roll in the blood flow on microvascular endothelial cells of  the metastatic target tissue. As a 
result the constitutively active MSC α4β1 integrin binds to the endothelial VCAM-1, and the E-selectin glycoprotein and gly-
colipid ligands of  MCS bind to the endothelia E-selectin of  microvascular endothelia cells. Also, the elevated α5β1 integrin on 
MSC can interacts with the endothelial ligand, fibronectin (FN). As consequence, the MSC becomes able to traverse endothe-
lial cell-cell junction through α5β1 and the α6β4 binding to the surface and basement membrane ligands, Laminin (LN) and 
FN. The process of  MCS migration is thought to involve the binding of  IL-8 and SDF1 to CXCR1 and CXCR4, respectively. A 
mechanism that is described in migratory process of  melanoma and CSCs. Also, additional factors such as VEGFR-1, 

VE-cadherin, and TIE may be involved in the promotion of  MSC metastasis.
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metastasis gene, NEDD9 is required for melanoma cell invasion 
and dissemination. The expression of  NEDD9 protein is elevated 
in patient biopsies and is associated with melanoma progression 
[79]. The detection of  NEDD9 protein in CD133+ human cord 
blood progenitor cells under condition leading to the enhance-
ment of  metastatic potential of  cancer cells, suggesting an es-
sential role for this protein in the regulation of  the metastatic po-
tential of  CSCs. Thus, during tumor progression CSCs hijack the 
mechanistic program of  the epithelial-to-mesenchymal transition, 
releasing their epithelial characteristics, such as resistant cadherin-
dependent junctions to gain the invasive ability [80]. The ability of  
normal and tumor cells to migrate is based on a common regula-
tory mechanisms, by which the stromal cell derived factor 1(SDF-
1) signaling mediates the regulation of  hematopoietic stem cells 
(HSCs) migration, via the C-X-C chemokine receptors type4 
(CXCR4). Like other cancer types, the dissemination of  mela-
noma subpopulation is mediated by SDF-1/CXCR4 system [81]. 
Thus, the inhibition of  the interaction between CXCR4 and its 
ligand SDF-1 has been reported to suppress melanoma metastasis 
into murine lungs [81]. Of  note, the elevation of  CXCR4 levels is 
mostly associated with poor prognosis in patients with malignant 
melanoma [82] Accordingly, the existence of  CD133+CXCR4+ 
melanoma subpopulation in cutaneous melanomas with invasive 
phenotype and poor prognosis is an evidence for the functional 
role of  SDF-1/CXCR4 system in the promotion of  melanoma  
progression and migration, and finally the metastatic potential of  
MSCs. Proposed model for metastatic dissemination of  Melano-
ma-initiating cells/ MSC is out lined in Figure.2.

Mechanisms of  Melanoma Stem-Like Cells- Me-
diated Chemo- Resistance

The chemo-resistance of  advanced malignant melanoma is medi-
ated by several  mechanisms, which have been intensively studied 
in the context of  tumor stem cell [83]. These resistance mecha-
nisms include the destruction of  cancer apoptotic pathways, ex-
cessive activation of  aberrant signaling pathways leading to tu-
mor growth and survival, induction of  the expression of  ABC 
drug efflux transporters [84,85]. ABCB5, is a human multi-drug 
resistance (MDR) P-glycoprotein family member, which medi-
ates chemo-resistance in melanoma via its function as a drug ef-
flux transporter [86,87]. The expression of  ABCB5 is associated 
with increased level of  tumor antigen P97, a melanotransferrin 
(MTf) that is associated with melanoma growth [88]. More impor-
tantly, the expression of  ABCB5 has been shown to be specific 
to CD133+ tumor stem cell phenotype [14]. Also, immune histo-
chemical analysis of  clinical samples derived from patients with 
malignant melanomas showed that the expression of  ABCB5 is 
characteristic for a minority of  melanoma population of  both pri-
mary and metastatic origin [89].

Because of  CSCs are resistant to chemo- and radiation therapy, 
the failure of  conventional therapy and thereby result in tumor re-
lapse. Accordingly, tumor recurrence may be the consequence of  
the preferential killing of  differentiated cells while leaving CSCs 
behind. Thus, understanding the mechanisms that underlying 
MSCs resistance may help improve the treatment outcome and, 
in turn, prevent melanoma recurrence.

Chemo-and radiation resistance of  CSCs is mediated through ge-
netic and cellular alterations conferring resistance to conventional 
therapeutic approaches [90,91]. Genetic and cellular alterations 
include, tumor dormancy associated with delayed cell cycle kinet-

ics, efficient DNA repair, the expression of  multidrug-resistance 
transporters, and destruction of  the apoptotic pathway[92]. The 
role of  checkpoint kinases 1 /2 (Chk1/2) in the modulation of  
CSCs resistance to chemo- and radiation therapy has been report-
ed [93,94]. It has been reported that Chk1/2 kinases have higher 
basal and inducible activities in CSCs when compared to normal 
stem cells [95]. Although some therapeutics like alkylating agents 
have been approved for their cytotoxicity, these agents can also 
enhance Chk1/2 kinases in CSCs and thereby contribute to the  
potentiation of  the resistance mechanisms of  CSCs to chemo- 
and radiation therapy [96]. Moreover, CSCs can deduce resistance 
to chemical agents through the expression of  drug efflux pumps 
such as ABC family members, as a mechanism that responsible to 
pump the drugs out of  the cells [97]. The expression of  ABCB5 
in CSCs including MSCs has been reported [98]. The role of  Akt 
pathway in the modulation of  CSCs resistance is also suggested 
[99]. Also, the expression of  apoptotic inhibitors is a mechanism, 
whereby CSCs confer resistance to chemo-and radiation therapy.

Mechanisms of  Cancer Stem-Like Cells in Mela-
noma Recurrence

The ability of  normal adult stem cells to maintain the balance 
between self-renewal and differentiation is mediated by adhesive 
factors and signaling interactions in stem cell niches. Thus, the 
mechanism regulating the entry of  metastasis-initiating cells into 
dormancy and to undergo reactivation of  key components of  
cancer stem niche [100,101].

Melanoma recurrence is an important phenomenon, since the 
presence of  persistent tumors in patients is important not only 
for clinical management, but also for understanding tumor biol-
ogy, particularly tumor dormancy. Melanoma recurrence and dor-
mancy seem to result from the inability of  current therapeutic 
regimens to completely eradicate the putative melanoma subpop-
ulation [102]. Although the recurrence risk is very low so that the 
need to invasive follow up beyond long time is not taken seriously, 
and new symptoms or clinical findings may go back to the earlier 
diagnosis.

Apart from clinical cause and features of  melanoma recurrence, 
the balance between cell proliferation and apoptosis is thought 
to be an essential determinant of  the melanoma tumorigenic 
potential. Although the proliferative activity of  melanoma is 
regulated, in part, by tumor vascularity[103], the contribution of  
nonvascular extracellular matrix is also essential for tumor pro-
gression[104,105]. Accordingly, the role of  MSCs is increasingly 
recognized in the progression of  primary melanoma and its me-
tastasis [24,54]. Accumulated evidence reveals that the cells that 
initiate metastatic outgrowth of  CSCs are tumor cells with stem 
cell properties [54]. The antigenic patterns of  primary melanoma 
are variable and heterogeneous, and possess small fraction of  sub-
population that is characterized by the expression of  CSC marker, 
such as CD166, CD133, and nestin [24], an evidence for the pres-
ence of  genetic pathways that are instrumental for stem cell bi-
ology. As widely established metastasis-initiating cells are cancer 
stem cells, whose entry into dormancy and subsequent reactiva-
tion is mediated by intrinsic programs and signaling pathways that 
resemble the self-renewal mechanism of  adult stem cells. Thus, 
many patients with carcinomas have been found to suffer from 
metastatic recurrence in later years after initial diagnosis and radi-
cally surgical and nonsurgical treatments [106,107].
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Mechanisms Regulating The Adhesion of  Mela-
noma Stem-Like Cells To Their Niches

Normally, at least in the hematopoietic, intestinal, and hair fol-
licle systems, the niche maintains SC primarily in a quiescent state 
by providing signals that inhibit cell growth as evidenced by the 
ability of  SC to retain bromodeoxyuridine labeling for long pe-
riods of  time [108] The function of  niche cells is likely to block 
expression of  genes that trigger the onset of  differentiation with 
differentiation being the default stage (fail-safe mechanism). The 
proliferation of  CSC needs depends on the reactivation of  stem 
cell (SC) niche in response to CSC self-renewal signals. Alterna-
tively, CSC or transient-amplifying progenitor cells have become 
niche-independent upon genetic or epigenetic alterations that en-
able autonomous self-renewal.

Cadherin and β-catenin adhesion molecules anchor melanocytes 
in the epidermis [109]. Epidermal SC remain attached to the niche 
through the cadherin-β-catenin interaction, while in the activated 
stage, β-catenin is localized to the nucleus, a mechanism that is 
essential for SC proliferation to ensue [110]. Besides the cadher-
ins/catenins, multiple other signaling and adhesion molecules are 
involved in niche regulation such as SCF/c-Kit, Jagged/Notch, 
angiopoietin-1/Tie2 (Ang-1/Tie2), and Ca2+-sensing receptor 
(CaR) [111,112].

Strategies to Eradicate CSC

As highly differentiated cells that rarely divide, and as rapidly pro-
liferating cells that have poorly differentiated phenotypes, two 
basic therapeutic approaches for combatting cancer have devel-
oped: "differentiation therapy" [113] to induce differentiation 
and "destruction therapy" [114] to thwart malignant prolifera-
tion. Although the suggested therapeutic strategies are theoreti-
cally promising, the limited success in some cases encouraged the 
researchers and clinicians to propose a new strategy to eradicate 
CSC.

The concept of  CSC helps to explain why treatments that sub-
stantially reduce the tumor mass by removing proliferating cells 
fail to cure patients, because CSC are usually slow cycling and, 
therefore, resistant to the conventional treatments in addition to 
displaying enhanced DNA repair [115,116] and asynchronous 
DNA synthesis [117]. In addition, SC expresses higher levels 
of  anti-apoptotic proteins such as members of  the Bcl-2 fam-
ily. Further, most CSC express high levels of  multiple drug re-
sistance proteins (MDR) and, thus, are able to pump out many 
chemotherapeutic drugs. Lastly, effective immunologic reactions 
to cancer antigens may only target differentiating tumor progeny 
whereas CSC most often do not express tumor markers and are 
therefore not attacked by the immune system. If  CSC comprises 
only a minor fraction of  total tumor cells and if  these cells drive 
tumorigenesis, then profiling of  purified populations of  CSC may 

Figure 3. Schematic overview of  signaling pathways that can function as therapeutic target MSC. Therapeutic strategies 
for the efficient treatment of  melanoma metastasis. The inhibition of  Sonic Hedgehog (Shh) ligand to bind to its receptor 
Patched 1 (Ptch1) by the Shh ligand inhibitors leads to the repression of  the smoothened (Smo) that becomes unable to pro-
mote the activation of  Gli proteins (Gli1/2) that can not be translocated the nucleus , where they can function as transcription-
al activators of  their target genes that are essential for self-renewal of  tumor-initiating cells/MSCs. Also, direct inhibition of  
Smo by Smo antagonists can inhibit self-renewal of  MSC. The neutralization of  Wnt ligand by Wnt ligand inhibitors leads to 
the suppression of  Wnt pathway that, in turn, inhibits tumor progression. The inhibition of  tyrosine kinase receptors such as 
EGF by tyrosine kinase inhibitors, integrins by integrin inhibitors, or Targeting of  Notch pathway by anti-DLL4 antibody or 

with γ-secretase inhibitors can be an efficient strategies to eradicate MSCs.
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identify more successful molecular targets than profiling the bulge 
of  the tumor. In this regard, a cancer signature of  11-genes has 
been shown to be under the control of  the SC self-renewal gene 
Bmi-1 [118]. This conserved Bmi-1-driven pathway correlated 
with earlier recurrence, distant metastases and death in 1153 can-
cer patients based on the analysis of  11 genes [118]. From this 
and other studies, diverse hormones, growth factors, cytokines 
and chemokines (androgens, estrogens, EGF and TGF--catenin, 
Notch, BMP4, TGF--1/CXCR4) and tumorigenic signaling ele-
ments (telomerase, PI3K/AKT, NF-kB and Myc-1) have been 
suggested as important therapeutic targets to tackle initiation and 
progression of  various cancers [119-121]. Therefore, it is becom-
ing increasingly clear that effective cancer therapeutics may have 
to be retargeted to CSC.

Although the significant regression of  bulky tumor lesions in 
response of  patients to the treatment with inhibitors specific to 
BRAF, in addition to tumor recurrence many of  melanoma pa-
tients develop resistance to treatments [122,123]. Therefore, the 
development of  therapeutic strategies based on the combination 
of  multi-modal therapeutic modalities that specifically trigger the 
destruction multiple pathways that are responsible for the main-
tenance of  the bulk of  the tumor with inhibitors that can trig-
ger multiple pathways that are specific for melanoma subpopula-
tion may be essential to prolonged dieses free survival melanoma 
patients. However, the profile of  melanoma patients before and 
after therapy may help determine and optimize the best combina-
tion therapeutic strategy for the treatment of  individual melano-
ma patients. Thus, the analysis of  drug resistant melanoma sub-
populations that are selected after therapy for epigenetic and or 
phenotypic alterations may help design personalized therapeutic 
approach for the treatment of  individual patients. Figure 3 out-
lines signaling pathways and their possible targets as therapeutic 
strategies to eradicate MSC.

Conclusion

Malignant melanoma is a highly aggressive and heterogeneous 
tumor that composed of  many subpopulations with unique gen-
otypic and phenotypic pattern. The progression, maintenance, 
resistance to chemo- and radiotherapy, and recurrence of  mela-
noma is attributed to small fraction of  melanoma subpopulation 
that is similar to adult stem cells in characteristic and behavior. 
The identification of  melanoma stem cells (MSCs) improved our 
knowledge regarding melanoma initiation, progression resistance, 
and recurrence. The improvement of  current therapeutic strat-
egies and/or their substitution by more efficient one, may help 
to improve the treatment outcome of  melanoma. The investiga-
tion of  the molecular mechanisms, which are responsible for the 
regulation of  tumor progression, resistance and recurrence are 
attributed to MSCs. Understanding these mechanisms will help 
identify unique and/or multiple pathways that may be a potential 
target for melanoma treatment. The destruction or excessive ac-
tivation of  these pathways by small molecules inhibitors will help 
not only to eradicate the tumor bulk, but also will help eliminate 
melanoma-initiating cells. The ability to design therapeutic strate-
gies based on elimination of  both tumor bulk and MSCs is ur-
gently needed for an efficient treatment of  malignant melanoma.
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