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Abstract

Background: Endothelial progenitor cells (EPCs) are a diverse population of  mononuclear cells derived from bone mar-
row that are mobilized in response to vascular injury, circulate in peripheral blood and contribute to vascular repair. We 
evaluated circulating EPCs in women with coronary microvascular dysfunction (CMD) compared to matched controls.
Methods: Twenty-nine symptomatic women with no obstructive coronary atherosclerosis (<50% epicardial coronary ste-
nosis), and diagnosed with CMD invasively, and eleven reference control women were included. EPCs were defined as cells 
either expressing cell surface markers CD34+/CD133+ or CD34+/VEGFR2+. 
Results: Mean and median levels of  CD34+/CD133+ and CD34+/VEGFR2+ in the CMD group trended lower than the 
reference control group, although this was not statistically significant.  There was a significant positive correlation between 
CD34+/CD133+ subsets and LDL levels which was not found with CD34+/VEGFR2+. 
Conclusions: These pilot data in women with CMD demonstrate no difference in EPCs between CMD women compared 
to reference control subjects. Our study combined with prior publications in similarly characterized and larger populations 
suggests that absolute EPC levels (BMDAC), but not EPCs alone, may be adequately sensitive for providing a complete 
depiction of  endothelial injury or function in this population.
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Introduction

Endothelial progenitor cells (EPCs) are a diverse population of  
mononuclear cells derived from bone marrow that are mobilized 
in response to vascular injury [1, 2], and circulate in peripheral 
blood and contribute to vascular repair [3, 4]. Subpopulations of  
circulating EPCs expressing cell surface makers CD34+, CD133+, 
or vascular endothelial growth factor receptor (VEGFR) 2+ have 
been linked with coronary vascular dysfunction [5-11]. In addi-
tion, reduced circulating EPC levels are associated with cardiovas-
cular events [11] and acceleration of  atherosclerosis [8].
 
Women with chest pain, evidence of  ischemia, and no obstructive 
coronary artery disease (CAD) often have coronary microvascular 
dysfunction (CMD) [12, 13]. CMD is related to both endothe-
lial dependent and non-endothelial dependent mechanisms, and 

associated with adverse cardiovascular outcomes [12].  Invasive 
coronary reactivity testing (CRT) can be used to diagnose CMD 
[14]. We evaluated circulating EPCs in women with CMD com-
pared to age and BMI matched controls, and studied relationships 
between CD34+/VEGFR2+ and CD34+/CD133+ subsets of  
EPCs and measures of  CRT.

Methods

Study Subjects

Twenty-nine symptomatic women with no obstructive coronary 
atherosclerosis (<50% epicardial coronary stenosis), and diag-
nosed with CMD by CRT, and eleven reference control women 
were included after providing informed consent.  The reference 
control subjects were age and BMI-matched asymptomatic wom-
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en with no cardiac risk factors, not on any cardiac medications, 
and who had a normal exercise stress test using the Bruce pro-
tocol.

All women in the CMD group had undergone clinically indicated 
CRT for evaluation of  endothelial- or non-endothelial-dependent 
vascular function abnormality using intracoronary adenosine, 
acetylcholine, and nitroglycerin, as previously published [12, 14]. 
CMD was defined as those with at least one abnormality in CRT 
in either endothelial- or non-endothelial-dependent pathways [14, 
15]. 

Assessment of  EPCs by Fluorescence Activated Cell Sorting

A 10-15 ml sample of  venous blood was used for isolation of  
EPCs. Samples were processed within 4 hours after collection.  
Peripheral blood mononuclear cells (MNCs) were isolated using 
Ficoll density gradient centrifugation (Ficoll-Paque, Amersham), 
and washed twice with phosphate buffered saline. MNCs were 
stained for fluorescence activated cell sorting analysis using the 
following monoclonal antibodies: FITC-conjugated anti-human 
CD34 mAb (Becton Dickinson), PE-conjugated anti-human 
CD133 mAb (Miltenyi Biotech, Germany), and PE-labeled VEGF 
R2-Receptor (Kinase Domain Receptor [KDR], R&D Systems).  
Staining was performed immediately after isolation of  MNCs.  
EPCs were defined as cells either expressing cell surface mark-
ers CD34+/CD133+ or CD34+/VEGFR2+. Fluorescence acti-
vated cell sorting results were represented as “number of  events” 
per 50,000, and EPCs were expressed as absolute percentage of  
cells per total number of  cytometric events.

Statistical Analysis

All statistical analysis was performed using SAS (ver. 9.3; The 
SAS Institute, Cary, NC). Summary data are expressed as means, 

medians, and standard deviation for continuous variables and 
frequencies (%) for categorical ones. Pearson correlation coeffi-
cients were used to find associations between EPCs and clinical 
and CRT data. Kruskal-Wallis tests were used to compare EPCs 
between groups due to skewed distributions. A p-value of  less 
than 0.05 was considered to indicate statistical significance.

Results

Baseline characteristics of  women with CMD and reference con-
trol subjects are summarized in Table 1. By design, the reference 
control group did not have any cardiovascular risk factors. Three 
reference controls took self-prescribed aspirin. A majority of  the 
CMD group were taking a statin, 28% were on beta blockers and 
nitrates, while a minority were taking angiotensin converting en-
zyme inhibitors. 

Among CMD group, mean invasive CRT measures demonstrated 
the following: mean coronary flow reserve to adenosine was 2.5 
± 0.5; mean change in coronary artery diameter to Ach was 15 ± 
23%; mean change in coronary blood flow to Ach was 49 ± 80%; 
and mean change in coronary artery diameter to nitroglycerin was 
12 ± 16%.  
 
EPC levels obtained from fluorescence activated cell sorting are 
summarized in Table 2. Mean and median levels of  CD34+/
CD133+ and CD34+/VEGFR2+ in the CMD group trended 
lower than the reference control group, although this was not sta-
tistically significant.  

Both subsets of  EPCs, CD34+/CD133+ and CD34+/VEG-
FR2+ did not significantly correlate with any measures of  CRT.  
Furthermore, EPCs did not correlate with BMI, systolic or dias-
tolic blood pressure, or resting heart rate.  There was a significant 
positive correlation between CD34+/CD133+ subsets and LDL 

Table 1. Demographics and Clinical Variables.

CMD
(n=29)

Reference Controls
(n=11)

Age ± SD (yrs) 53 ±12 53 ± 6
Body Mass Index ± SD 26.8 ± 5.4 26.4 ± 3.2

Rest Heart Rate ± SD (bpm) 64 ± 11 63  ± 6
Systolic Blood Pressure ± SD (mmHg) 143 ± 26 132 ± 25

Diastolic Blood Pressure ± SD (mmHg) 70 ± 14 61 ± 11
Hyperlipidemia (%) 11 (38) 0
Hypertension (%) 10 (34) 0

Family history of  premature CAD (%) 16 (55) 0
Tobacco use (%) 7 (24) 0

Diabetes mellitus (%) 3 (10) 0
Aspirin (%) 17 (59) 3 (27)
Statins (%) 21 (72) 0

Beta blockers (%) 8 (28) 0
Calcium channel antagonists (%) 3 (10) 0

ACE inhibitors (%) 2 (7) 0
Nitrates (%) 8 (28) 0
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levels which was not found with CD34+/VEGFR2+ (Table 3).

Discussion

Our pilot study shows no significant differences in levels of  cir-
culating EPCs determined by flow cytometry in women with 
CMD compared to controls, although there was a trend toward 
lower levels in the CMD group. No correlation was demonstrated 
between levels of  EPC subpopulations CD34+/VEGFR2+ or 
CD34+/CD133+ and CRT measures for non-endothelial and 
endothelial function. We also did not find a correlation between 
BMI, baseline heart rate and blood pressure with EPCs, while 
LDL correlated positively with CD34+/CD133+ subset.  

In a previously published paper in 32 CMD women from the 
Women’s Ischemia Syndrome Evaluation (WISE) cohort, the 
number of  circulating endothelial cells were similarly not different 
compared to healthy reference group [35 (10, 320) vs. 30 (20, 48); 
p=0.53], and circulating endothelial cells did not relate to CFR, 
however  bone-marrow derived angiogenic cell (BMDAC) func-
tion and number of  colonies were lower in CMD women [16].  
The variability between the prior and current results is likely due 
to differences in the EPC measure methods, whereby BMDAC 
may be a more sensitive biomarker for CMD.  

Small sample size studies that are not phenotyped for CMD (and 
categorized as cardiac sydrome X) have demonstrated mixed re-
sults regarding EPC levels [10, 17]. In a study of  57 subjects, Boil-
son et al., found that those with coronary endothelial dysfunction 
had lower levels of  circulating CD34+/CD45dim and CD34+/
CD45dim/CD133+ EPCs when compared to those without en-
dothelial dysfunction [18]. This variability regarding EPC data in 
the literature may be related to variability in the methods of  EPC 

collection and isolation, and differences in the definition of  EPCs. 
Levels of  EPCs appear to be dynamic in response to severity of  
disease states as well as acute ischemia [19-21]. Severity of  ob-
structive CAD affects levels of  circulating EPCs with those hav-
ing multivessel CAD having lower levels of  EPCs compared to 
those having single vessel obstructive CAD [22]. Recently Chan 
et al., reported that EPCs differ in their associations with obstruc-
tive CAD severity, where early EPCs do not correlate with CAD 
severity, but late outgrowth endothelial cells correlate with CAD 
severity [23]. We hypothesize that the levels of  EPCs in women 
with CMD may also be variable related to the presence and extent 
of  non-obstructive CAD.

It should be noted that in this study, 72% of  women with CMD 
were treated with statins at the time of  EPC collection, and statins 
have been shown to increase mobilization and proliferation of  
EPCs in cardiac patients [24-26]. We found that LDL levels cor-
related positively with CD34/CD133+, but not CD34+/VEG-
FR2+ cells. The significance of  this is uncertain because 72% of  
our CMD group was on statins and mean LDL was 100 ± 36.  
Wang et al., [27] described that ox-LDL is associated with de-
creased levels of  EPCs, in contrast to our positive correlation in 
our subjects receiving statins.

Limitations

We conducted a small pilot study of  well-phenotyped women 
with CMD, therefore our results may not be relevant to women 
with other forms of  cardiovascular disease as well as men. EPC 
counts may fluctuate related to menstrual cycle which was not 
evaluated in this pilot study. Although, absolute levels of  EPCs 
do not correlated with degree of  endothelial dysfunction as meas-
ured by CRT, we did not assess functional properties of  EPCs in 
this study.

Table 2. Levels of  Endothelial Progenitor Cells.

CMD 
n=26 (mean ± SD)

Reference Controls n=9
(mean ± SD) p-Value

CD34+, VEGFR2+ (%) 0.18 ± 0.33 0.21 ± 0.23 0.35
CD34+, CD133+ (%) 0.04 ± 0.03 0.09 ± 0.10 0.17

CD34+ (%) 0.08 ± 0.07 0.12 ± 0.12 0.14

Table 3. Correlations Between EPCs and Clinical Variables.

Correlation Coefficients (r)
p-value

CD34 + VEGFR2 + CD34 + CD133 +

BMI 0.11
0.51

-0.01
0.96

Rest SBP -0.01
0.94

0.08
0.66

Rest DBP -0.09
0.67

-0.20
0.32

Rest HR 0.16
0.36

0.17
0.34

LDL -0.05
0.81

0.57419
0.01
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Conclusion

In conclusion, these pilot data in women with CMD demonstrate 
no difference in EPCs between CMD women compared to refer-
ence control subjects. Our study combined with prior publica-
tions in similarly characterized and larger populations suggests 
that absolute EPC levels (BMDAC), but not EPCs alone, may be 
adequately sensitive for providing a complete depiction of  en-
dothelial injury or function in this population.
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