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Introduction

In a robust design process, the determination of  the variability 
of  the nonlinear dynamic response of  a complex structure is es-
sential. Uncertainties come from the tolerances of  manufacturing, 
the boundary conditions and the external excitations. These struc-
tures are largely used in the fields of  aerospace, automotive, civil 
engineering ...The uncertainty of  the physical parameters; non-
linearity and complexity of  the structure require the development 
of  a complete mathematical approach for predicting the dynamic 
behavior variability.

In addition, several methods have been developed in the literature 
to take account of  uncertain parameters in the nonlinear dynamic 
response. The reference method is the Monte Carlo simulation 
[1]. This method allows a statistical evaluation based on a large 
number of  deterministic analyses by considering different values 
of  uncertain parameters. However, it requires the generation of  
big size samples then generates a prohibitory time computing. 
This approach is thus very costly. Also perturbation methods are 
widely used to calculate the first moments (mean, standard devia-
tion) of  dynamic response whose uncertain variables vary slightly. 
These techniques are based on the Taylor series development of  

the response around its mean.

This allows the direct determination of  the variability of  the 
response according to the physical parameters (mechanical and 
geometrical) random. Indeed, perturbation methods based on a 
development in Taylor series of  second order [2] and Neumann 
expansion method [3] are generally efficient. Another develop-
ment in the first order [4] gives similar results to the previous 
developments with a reduced time computing. Furthermore, an-
other form of  development is a Polynomial Chaos Expansion 
(PCE) [5, 6]. The stochastic solution may be expanded in terms 
of  the polynomial chaos basis whose elements are obtained from 
orthogonal polynomial [7]. The properties of  this polynomial ba-
sis are used to generate a system of  deterministic equations. The 
resolution of  this system is used to determine the variability of  
the response.

Recently Sarsri et al., [10] used the Component Mode Synthesis 
method coupled with the perturbation method to calculate the 
stochastic modes of  large FE models with uncertain parameters 
for the linear problems. In another work, Sarsri et al., [9] devel-
oped an approach coupling Component Mode Synthesis reduc-
tion method and developing uncertainty by a polynomial chaos 
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expansion to calculate the frequency transfer functions and re-
sponse temporal for linear stochastic structures.

Sinou J. et al., [10] proposed for simple structures, requiring no re-
duction, a technique taking into account uncertainties in nonlinear 
models, by combining the method of  Harmonic Balance Method 
(HBM) and developing uncertainty by a polynomial chaos expan-
sion. This work is an extension to the nonlinear problems. The 
aim is to estimate the stochastic nonlinear dynamic response for 
a large structure with a minimum computational cost. To do this, 
we develop a methodological approach taking into account uncer-
tainties in nonlinear models, by combining the Newmark method 
and developing uncertainty by a polynomial chaos expansion.

Modeling of  a Nonlinear Dynamical System

The governing equation of  motion of  a general non-linear Multi-
ple Degrees of  Freedom (MDOF) mechanical system and subject 
to external force {Fe} may be written in the following form:

[ ]{ } [ ]{ } [ ]{ } { } { }nl eM u C u K u F F+ + + = 
 ------ (1)

In this equation, [M] is the mass matrix, [C] is the damping matrix  
[K] is the stiffens linear matrix, {u} is the displacement vector 
containing the structural Degrees Of  Freedom DOF, {Fnl} is a 
general (nonlinear) restoring function which can depend on the 
displacements {u}.

Stochastic Perturbation Method

The perturbation method is largely employed in the field of  the 
stochastic finite elements. It is based on an approximation the ran-
dom variables by their development in Taylor series around their 
average value. These developments are truncated at the second 
order. The perturbation method must obey in the conditions of  
existence and validity, in particular the reduced field of  variation 
of  the random variables. We present an extension of  this method 
for the nonlinear dynamic systems with uncertain parameters.

Let us assume that the mass [M], the dumped [C] and the stiffness 
matrices[K], and The external force vector {Fe}

i   are related to a 
vector of  the random variables ϑi  (i=1,…,I). In the time domain, 
the stochastic differential system Equation(1)  has to be solved. 
The first two moments of  time response (average and variance), 
will be calculated by using the second order perturbation method.

One defines the vector of  the average parameters iϑ
−

 and the 

quantity i i idϑ ϑ ϑ
−

= − . All the matrices and vector in Equation (1)  
are random, and are expanded through second order Taylor series 
as follows:
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where [.]0, [.]n and [.]np are deterministic matrices corresponding 
to the zero, the first and the second order partial derivatives with 
respect to the random parameter ϑi and given by:
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Indicial notations are used, with indices n, p running over the se-
quence 1, 2,…, I as well as the repeated indices summation. 

The unknown vectors displacement, velocity and acceleration are 
also developed through Taylor series as follows:
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And the vector non linear force:

{ }{ } { } { } { }{ }0 n np
nl nl n n pF ( u ) F ( u u d u d d )ϑ ϑ ϑ= + +

 ----- (4)
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Substituting these developments into Equation (1) and writing the 
terms of  same order on gets the following differential systems:

Zero order equation

[ ] { } [ ] { } [ ] { } { } { }0 0 00 0 0 0 0
nl eM u C u K u F F+ + + =   ----- (5)

First order equation

[ ] { } [ ] { } [ ] { } [ ] { } [ ] { }
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 ----- (6)

Second order equation
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Polynomial Chaos Expansion Method

The polynomial chaos expansion presented in this section analysis 
the dynamic behavior of  structures with uncertain parameters.  
the physical properties of  structural described by the mass [M], 
damping [C] and stiffens [K] are random matrices 

Using a particular formulation of  the stochastic finite element 
method the matrices [M], [C] and [K] can be represented in the 
form:
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The external vector force is:

{ } { }me 0 e mF f .F
m ξ== ∑  ------ (9)

ξi, ξj, ξm and ξk are the random variables.

The temporal response of  non linear dynamic systems with 
the random properties is also a random process the vectors  
( ) ( )u t , u t and u(t)   are expanded along polynomial chaos basis.

0 1

0 1

}

}

{ ( )} { ( )}. ({ )

{ ( )} { ( )}. ({ )

N Q
n n n i i

N Q
nn n i i

u t u t

u t u t

ψ ξ

ψ ξ

= =

• •

= =

= ∑

= ∑  ----- (10)
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Where ψ(ξi) are multidimensional Hermit orthogonal polynomials 
in the random variables ξi defined by:
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( ) ( ) ( )n n nu t , u t and u t   denote a vector determinist coefficients. 
Subsisting all this development into equation of  motion:
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We multiply the equation obtained by ψm. If  we used averaged 
(integration on the domain of  random variables), and use the or-
thogonality properties of  polynomials, we obtained the following 
equation:
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i n mξψ ψ  is the inner product defined by the  mathematical ex-
pectation operator.

Using matrix notations the resulting algebraic non linear system 
can be rewritten as:

[ ]{ } [ ]{ } [ ]{ } { } { }nl eMG U CG U KG U FG FG+ + + = 
 ----- (13)
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Note that due to the orthogonality of  polynomials, most of  ex-
pressions i n mξψ ψ are zero. 

The mean and variance values of  {u(t)}  are given directly by:

( ){ } { }0mean( u t ) u (t)=
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 ------ (14)

Stochastic Temporal Response

The temporal response from time 0 to time T of  equations (5, 
6,7 and 13) is required. The time T is subdivided into n intervals 
∆t = T/n and the numerically solution is obtained at times tr = 
r.∆t r ∈ IN and 0 ≤ r ≤ n Assuming that the solutions at times t 
are known and that the solution at time (t + ∆t) is required next. 
According to the Newmark method, the following assumption is 
used at time (t + ∆t):
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With x can take 0, n, np values.

In which, the two parameters α and δ, verify δ ≥ 1/2 and α ≥ 
(δ+0.5)/4 in order to get accurate and stable solution. The fol-
lowing notations are used:
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Based on these notations the following equations are resulted:

For Perturbation Method

Zero order equation
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First order equation
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The solution of  the problem is obtained by successively solving 
of  the following algebraic equations:
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The mean and the variance values of  displacement u(t+∆t) are 
given by:
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For Polynomial Chaos Expansion Problem
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The solution of  the problem is obtained by:
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The mean and the variance values of  displacement u(t+∆t) are 
given by:

( ){ } ( ){ }0E( u t t ) u t t+ ∆ = + ∆  

( ){ }( ) ( )( ){ }2 2
1 i ivar u t t u t t .N

i ψ=+ ∆ = ∑ + ∆
 ----- (23)

Numerical Example

For non linear discrete systems with stochastic parameters, some 
benchmark tests are elaborated to demonstrate the efficiency of  
the methodological approach. The presented method can be ap-

plied to continuous or discrete systems. In this article we restrict 
ourselves to show the applicability and effectiveness of  these 
methods for the dynamic analysis of  nonlinear discrete systems 
with N DOF. A non linear dynamic system consisting of  20 mass-
es connected by 21 springs nonlinear shown in Figure 1.

The following characteristics are considered:

Masse: 1 2 20m m m 2kg= =…= =

Linear stiffness: 1 3 39 41k k k k 50N / m= =…= = = ;

Non linear cubic stiffness: 3
2 4 42k k k 10N / m= == =

In this study, it has been chosen to investigate the effects of  un-
certainties by considering different mass uncertain parameters. 
The mass parameter is supposed to be a random variable and de-
fined as follows: m = m0 (1+σmϑm) Where ϑm is a zero mean value 
Gaussian random variable, m0 =mi i=1…20=2kg is the mean value. 
ϑm=2%, ϑm=5%  and ϑm=7%  are the standard deviation of  this 
parameter. Firstly, the mean and variance of  the magnitude of  dis-
placement have been computed by Polynomial Chaos Expansion, 
the perturbation method. The obtained results are compared with 
those given by the direct Monte Carlo simulation 700 simulations. 
The obtained results are plotted in Figures 2, 3 and 4 which corre-
spond respectively to temporal displacements of  the mass m3 for 
ϑm=2%, ϑm=5% and ϑm=9%. Very small discrepancies between 
the predictions given by Polynomials Chaos Expansion, perturba-
tion method and Monte Carlo simulation are observed. Again, if  
more accuracy is needed, then the higher order polynomial chaos 
can be easily used. In order to highlight the performances of  the 
proposed approach in term of  computation cost, the CPU time 
between the Polynomial Chaos Expansion, perturbation method 
and Monte Carlo simulation is given in Table 1. A spectacular time 
reduction is observed when using the Polynomial Chaos Expan-
sion.

Conclusion

The main of  this work is to provide the variability of  the transient 
solution of  a complex structure by considering geometric nonlin-
earities. We have achieved this by implementing temporal integra-
tion for the perturbation method, the polynomial chaos expansion 
and the Monte Carlo simulation. The perturbation method gives 
accurate results for low dispersions against when the dispersion 
increases the polynomial chaos expansion gives good results. The 
numerical tests show the accuracy of  the results and minimization 
of  cost calculation compared to Monte Carlo simulation.

Figure 1. Nonlinear Structure.
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m1 m2

u1 u2
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m19 m20
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Figure 2a. The Mean of  Temporal Response of  (m3) for  ϑm= 2 %.
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Figure 2b. The Variance of  Temporal Response of  (m3) for  ϑm = 2%.
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Figure 3a. The Mean of  Temporal Response of  (m3) for ϑm= 5%.
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Table 1. The CPU time between the polynomial chaos expansion, perturbation method and Monte Carlo simulation for 
ϑm = 9%.

Monte Carlo Simulation Perturbation method Polynomial Chaos Expansion
CPU time(s) 89.688737 1.539396 1.539396
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Figure 4b. The Variance of  Temporal Response of  (m3) for  ϑm= 9%.
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