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Introduction 

The rate of  branching and diversification of  life forms in evolu-
tion is a fundamental controversy between neo-Darwinian scien-
tists and paleontologists. Neo-Darwinians claim that there are no 
fundamental differences between relative short time scale evolu-
tion (microevolution) and speciation (macroevolution) [12, 14, 
16, 17]. Roughly speaking, the neo-Darwinian model is a strictly 
continuous paradigm which states that both branching and di-
versification can be explained by gradual accumulation of  small 
independent genetic changes through natural selection [5, 6]. In 

contrast, paleontologists, on the basis of  fossil data, demonstrate 
long period of  stasis (no speciation) followed by speciation burst, 
which suggest that different mechanisms are responsible for spe-
ciation. The latter model, also known as “Punctuated Equilibri-
um” [4], suggests that speciation cannot be explained solely on 
the basis of  small independent mutation. Punctuated equilibrium 
is a theory that can be also explained by the mechanism of  genetic 
robustness defined herein as the ability of  an organism to remain 
a distinct species despite environmental or genetic perturbation. 
Genetic robustness accounts are scarce with the majority includ-
ing models of  mutational connectivity as modular networks [1, 
7, 15, 18],  however those studies are generally focus on intrin-
sic molecular constraints which results in RNA misfolding and 
does not account for epistatic interaction between molecules on 
genomic scales. Moreover those models are based on theoretical 
computer simulation and lack the ability to verify them with em-
pirical biological evidence.

As opposed to past traditional sequencing, new deep sequencing 
technologies allow to cover the pattern of  point mutations across 
the entire genome (coding and non-coding regions) and therefore 
enables the use of  novel holistic approaches to extrapolate the 
pattern of  genetic divergence within and between different spe-
cies underscoring the role of  single genes during the process. To 
illustrate such pattern, it is essential to examine the distribution 
of  Single Nucleotide Polymorphisms (SNPs) between and within 
species and the physical co-localization of  genetic loci (synteny), 
thus undermining the role of  duplication, translocation or ane-
uploidy in the process.
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We use a recently published SNP dataset of  17 mouse strains in-
cluding Mus musculus and M. spretus. Being the most studied mam-
malian model species, the mouse offers several advantages to study 
evolution. The species M. musculus has a unique population struc-
ture which includes three wild subspecies (with estimated time 
divergence of  1 million years [2, 3, 11] and a collection of  several 
laboratory inbred strains all of  which were fully sequenced. In 
contrast to M. musculus population, M. spretus is a different mouse 
species which lives sympatrically to M. m. domesticus. The absence 
of  any spretus-musculus hybrids in the wild suggests that the two 
species might have post zygotic barrier [8]. Nevertheless both 
species share similar synteny. These peculiar genomic and popula-
tion qualities allow to make inference of  the correlation structure 
of  the genome by using genomic segmentation approach and to 
identify hierarchical feature of  divergence in a single step analysis. 
Identification of  strong and invariant correlation may support the 
existence of  genetic robustness within and between genetic loci 
with biological evidence.

Principal Component Analysis (PCA) is a well suited technique 
to model divergence pattern using distance data matrix. Being a 
descriptive non-inferential approach, PCA allows inferring trajec-
tory of  divergence according to the genetic variance of  millions 
of  genetic loci simultaneously without the need to consider false 
positives or correct for familywise error rates when using confi-
dence interval to estimate significance for each locus individually. 
Moreover, the reliance on the ortogonality of  correlation flux as-
signed to each principal component in term of  biological mean-
ing (when it exists) allows us to identify features of  divergence 
with association to different evolutionary scenario and quanti-
tatively measure the amount of  genomic correlation assigned to 
each principal component. Using permutation of  genomic seg-
mentation it is possible to examine a posteriori (i.e. without any 
effect on the extracted components) whether the observed corre-
lation is resistant to perturbation and thus to assess if  the original 
co-localization of  genetic segments is imprinted or whether the 
observed correlation is due to pure chance.

Our analysis unravel that approximately 90% of  the genome vari-
ation entity is highly correlated along different DNA segments. 
We further demonstrate that this correlation is coherent at dif-
ferent magnification scales correspondent to different choices of  
DNA segments length, suggesting strong robustness of  correla-
tion structure. In addition, we identify two principal components 
which capture the genetic variability of  interspecific and intersub-
specific origin and demonstrate that each one of  them illustrates 
different behavior. Moreover, we illustrate that the projection of  
the genetic distance of  wild-derived autosomes results in hetero-
geneous, non-stochastic distribution which collapses only after 
simulation of  99% of  the total number of  segments, suggest-
ing that it is inherited feature of  ordered co-localization DNA 
patches across the genome. We argue that those features indicate 
on strong genetic robustness which is imposed by the existence 
of  strong regulatory machinery which in turn has a major effect 
on evolutionary trajectory and suggest that micro and macro evo-
lution are distinct evolutionary process.

Materials and Methods

Genomic Data

We have used SNP data obtained from 17 mouse strains sequenced 

by the Sanger institute [13]. The data posit of  ~ 65 million high 
confidence SNPs calls and covers both, coding and non-coding 
regions. The data contain information from the following mouse 
strains: 1) 13 mouse laboratory strains (129P2,129S1/SvImJ, 
129S5, A/J, AKR/J, BALB/cJ, C3H/HeJ, C57BL/6NJ, CBA/J, 
DBA/2J, LP/J, NOD/ShiLtJ, NZO/HiLtJ), 3 wild-derived M. 
musculus subspecies (CAST/EiJ [M. m. castaneus], WSB/EiJ [M. m. 
domesticus], PWD/PhJ [M. m. musculus]) and one wild-derived M. 
spretus species (Spretus/EiJ). 

Experimental Design 

We used a novel approach described in our previous study [9] 
to identify pattern of  genetic divergence. In short, our approach 
suggests that instead of  making pairwise analyses of  millions of  
genetic loci when many individuals are presented, it is possible to 
use only one distinct reference species in order to calculate a ma-
trix which represents the genetic distance between all M. musculus 
derived strains to M. spretus. This approach enables to extract pat-
tern of  divergence from a single data whose columns (variables) 
correspond to the analyzed mouse strains and the rows (statistical 
units) are the genetic distances of  each locus with the correspond-
ing locus of  M. spretus across the 16 strains.

Distance Matrix Calculation

The distance data matrix was calculated by using genome segmen-
tation approach. For each DNA segment we have measured the 
relative genetic distance, wi = k/l, where wi is the genetic distance 
between each M. musculus and M. spretus strain relative to DNA 
segment i, while k is the number of  point mutations in each DNA 
segment, and l is the length of  the DNA segment in base pairs. In 
order to check whether our results are reproducible we have used 
several DNA segmentation strategies corresponding to individual 
patches from 50 to 10000bp length.

Principal Component Analysis 

PCA is an optimal method to obtain a reliable signal-to-noise dis-
crimination. In the context of  our current study we used PCA to 
examine the correlation structure of  the distance space separat-
ing M. spretus and M. musculus strains relying on the mutual or-
thogonality of  the resulting eigenvectors. Such orthogonality may 
illustrate different trajectories of  genomic evolution underlying 
the correlation structure between millions of  genetic loci. PCA 
offers a dual representation of  the analyzed data set in terms of  
component loadings (in our case the correlation coefficient be-
tween strains and components) and component scores (in our 
case the relative importance of  a given locus for the correspond-
ing component). The component loading space allows for a neat 
discrimination among strains, while component scores allow for 
the identification of  most relevant loci for the different genome 
variation trajectories.

Results

In the following PCA application, we used genomic segmentation 
of  200bp length and included in the interpretation the follow-
ing properties: loadings (the correlation of  each strain with the 
associated principal component) explains the phylogenetic and 
shared functional classification of  group of  mouse strains, eigen-
values (proportion of  explained variance) explains the fraction of  
genetic diversity that each principal component explains, scores 
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as for the magnitude of  contribution of  each genetic segment 
(DNA segment) to the associated principal component. We used 
descriptive statistics to characterize the distribution and shape of  
the scores in order to infer biological relevance.

First Principal Component

PC1 captured the genetic diversity which explains the divergence 
between M. musculus strains and M. spretus, hence the speciation. 
We find that the critical majority of  the genetic variance of  the 
distance data matrix was captured by PC1 (~ 90%). This was ex-
pected from the fact that genetic divergence owned to speciation 
should be significantly more dominant than the one derived from 
the intersun specific signal. Notably, the loading of  PC1 were 
identical for al M. musculus strains (loadings = 0.6) proving that 
with relation to M. spretus, the correlation of  the millions of  ge-
netic loci are nearly identical for the different strains. We analyzed 
the score distribution of  the first principal component. Since the 
scores represent the magnitude of  each DNA segment from the 
principal component, it is possible to characterize the likelihood 
of  each genetic fragment to contribute to the divergence. In that 
case, segments which have extreme deviation from the mean may 
illustrate regions of  rapid evolution and opposed regions with 
scores near the mean should evolve more slowly. We found that 
the distribution of  the 8 million patches approximated a Gaussian 
distribution (kurtosis = 3.5). Interestingly the fact that PC1 ap-
proaches Gaussian distribution illustrates that the genetic diver-
gence trajectory correspondent to PC1 is not influenced by few 
genes but derives from the collection (or possible interaction) of  
large fraction of  the genome. That is each DNA segment is im-
portant for the branching event, even if  with a continuous grada-
tion (mirrored by component score). This particular distribution 
strongly suggests a unitary and coherent change across the entire 
genome.

Second Principal Component 

While PC1 explained the critical majority of  the variance relevant 
for speciation, we find that PC2 captured the genetic variance 
owned to the intersubspecific divergence (between M. musculus 
wild derived strains). In general PC2 correspond to 3% of  the 
total variance and the loadings varies between M. m. casteneus = 0.8 
and M. m. demesticus = -0.2. The fact the two strains have opposite 
sign loadings on PC2 qualifies second component as a ‘shape’ 
component: going ‘away’ from castaneus corresponds to ‘approach-
ing’ domesticus. Interestingly, all the lab strains have similar loading 
values as to M. m. domesticus. This evidence is important since the 
lab strains are descendent of  M. m. domesticus with little contribu-
tion from M. m. casteneus and M. m. musculus, a fact that asserts our 
reliability on the loading space as indicator for phylogenetic rela-
tionships. In contrast to PC1, the score distribution of  PC2 is not 
Gaussian (kurtosis = 7) but is characterized by long tails collecting 
the specific physical locations responsible for the strain separa-
tion. Most important is our ability to classify a leading principal 
component which may explain speciation with modular compo-
nents (PC2) captured by the minor principal components giving 
evidence for intersubspecific divergence is a proof-of-concept 
that both principal components may explain different evolution-
ary processes. In other words, while PC1 is macroevolution the 
minor components explain microevolution processes, such as nat-
ural selection or genetic drift. The fact principal components are 
mutually independent by construction may be a proof-of-concept 
of  the existence of  two distinct genomic variation trajectories for 

macro (between species) and micro (within species) evolution.
Third and Fourth Principal Components

In accordance with biological interpretation of  the first two prin-
cipal components, we were able to assign a biological meaning 
for PC3 and PC4. Interestingly, while PC3 (like PC2) discrimi-
nates between wild derived species, PC4 discriminates two distinct 
groups of  laboratory mouse strains. Moreover one may postu-
late that since the variance explained in PC4 is associated with 
lab strains which are recent descendent of  M. m. domesticus this 
principal component capture the intra subspecific signal of  ge-
netic variation which can be later on treated as within subspecies 
divergence (short evolutionary time). In contrast, PC2 and PC3 
are principal components which are more relevant to interspecies 
variation (longer evolutionary time).

Genetic Robustness

The mathematical and biological distinction between leading and 
minor principal components is an important feature in our study 
rising from the robustness of  the correlation between the dis-
tances computed over millions of  DNA segments. We adopted 
the term “genetic robustness” to illustrate that each DNA seg-
ment has a threshold representing “mutability probability” (i.e., 
accounts for the number of  mutations which are robust to chang-
es with respect to the rest of  the genome). This observation em-
phasizes the collective motion of  millions of  genetic elements 
that span the genetic distance and may appeal the assumption that 
each genetic element has its own selective coefficient, thus impos-
ing more systematic behavior of  DNA segments either in coding 
and non-coding regions. If  the last was to occur, we would not 
expect to find such a strong robustness in the correlation struc-
ture, but rather observe more of  a gradient decay in the percent-
age of  variance between the first and minor components with 
less biological meaning. We further assessed the reproducibility of  
our results at different scales to strengthen the notion of  genetic 
robustness. We repeated the analysis and varied the length (L) 
of  the genome segmentation, to l = [50, 200, 500, 1,000, 2,000, 
10,000] base pairs for each chromosome separately and applied 
PCA on the various distance matrix. We found that, the percent-
age of  genetic variance and the loadings pattern were identical for 
all tested segment lengths in all chromosomes, pointing to scale 
invariant properties of  genetic variation. Such scale invariance, 
due to the mutual constraints existing between different parts of  
the genome, gives further support to our results, i.e. indicating 
that genetic robustness may have dominant role during evolution.

Non-Stochastic Distribution of  Genetic Variability

The scale invariant shape of  genetic distance was repeatedly dem-
onstrated in our analyses. It is important to note that scale invari-
ant property is ubiquitous in systems with high interaction and a 
proper way for such system to maintain their stability in the face 
of  perturbation. Even if  the biological explanation for the ob-
served scale invariant of  the genetic distance is not straightfor-
ward, its existence illustrates that genomic segmentation at any 
size length is not random and exhibit non-stochastic organization.

We have further examined the scale invariant properties of  the 
system variation, however this time we explored whether the 
DNA segments scores illustrate any particular shape or irregular 
distribution. As discussed above our PCA paradigm can distin-
guish between long to short evolutionary episodes given a certain 
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loading profile. In addition, since the distribution of  scores in 
each principal component approximates the amount of  explained 
variance which is minimal in the minor component (< 2.5% 
in PC2-PC4), any observed features which are apparent in the 
transformed data is encrypted when looking in the native data-
set. The real power of  PCA is that it enables us to observe such 
encrypted feature lowering the resolution to a fraction of  per-
centage from the total variability. This potentially enables us to 
find concordance between encrypted features and the biological 
process extrapolated from the loading signals. Interestingly, we 
find that the scores distribution varies significantly across the first 
four principal components when looking at the 2D scatterplot of  
the score distribution. Fig 1a illustrates a scatterplot of  the scores 
relative to PC2 and PC3 (wild-derived divergence) giving rise to 
seven cluster (star) shape. The figure illustrates heterogenic (non-
random) shape with six equidistant clusters (arms) decaying with 
decreasing intensity away from a common central (core) region. It 
is important to note that PC2 and PC3 capture the genetic vari-
ance which discriminates wild derived subspecies, hence account 
for 2.5% of  the variance and are lightly mixed with the signal 
deriving from laboratory strains (PC4). This simply stems from 
the fact that principal components are orthogonal to each other 
and therefore any observed signal depends on the rotation of  
the variance. There are two reasons to generate such an ordered 
cluster distribution: 1) biological reason, 2) mathematical discre-
tization due to low number of  mutations sampling from short 
genomic segments. In order to exclude mathematical artifacts we 
used permutation test on the real dataset in the following man-
ner. We used the original distance data matrix by bootstrapping 
each row (exchanging DNA segments in random position selec-
tion) so that each strain j may contain different genetic distance 
for each DNA segment in position i, however keeping the record 
of  the segment position. By using this method it is possible to 

maintain the position of  DNA segment, and to verify whether 
having different values across genome maintain the correlation 
and the distribution of  score after PCA projection. If  the permu-
tation does not change the score distribution, then we can con-
clude that the ordering structure of  DNA segments across the 
genome is not important and our analysis is biased due to low 
number of  mutations. However if  the seven clusters collapse due 
to the permutation then we can conclude that the ordering co-
localization across DNA segment is important in order to keep 
the correlation robust. Interestingly we find that that only by per-
muting > 99% of  the DNA segments the clusters are collapsed 
into single core region (Fig 1b). We find that permutations of  < 
99% of  the DNA segments do not have much effect on the 7 
clusters. Moreover, projecting PC3 and PC4 (laboratory strains) 
to 2D scatterplot does not results in the clustered form displayed 
previously, suggesting that 7 ray clusters (Fig 1c) characterize di-
vergence between wild-derived species. Additionally, we explored 
whether those clusters depends on chromosome origin and re-
peated the analysis for each chromosome separately. We conclude 
that the same clusters with the same orientation are invariant in 
the autosomes of  wild-derived origin. Exceptionally, the X chro-
mosome and autosomes of  laboratory strains do not display the 
same seven clusters shape. In addition 2D projection of  PC5 to 
PC17 which did not result in any biological interpretation (sto-
chastic noise) had similar distribution to the simulation. Moreo-
ver, we repeated the analysis with different DNA segments length 
and found that PCA projection gave the same results even for 
segments with length > 50,000bp.

Functional Classification

We used K-means clustering in order to test whether we can 
find any functional classification enrichment on chromosome or 
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chromosome regions (coding, non-coding, promotor or long in-
tergenic regions). As expected, we isolated 7 clusters, 6 clusters 
including DNA segments which are located in the arms of  the 
star and one cluster including segments from the core (Fig 1a). In 
general we find that the main difference between clusters 1-6 and 
the core cluster is the distribution of  segments in chromosome X. 
Accordingly, we found that while clusters 1-6 are under-enriched 
significantly, the core cluster is over-enriched in this chromosome. 

Discussion

Next Generation Sequencing (NGS) offers a great opportunity 
to extensively study genome evolution. The ability to sequence 
populations and to obtain high resolution SNPs density allows 
qualitatively and quantitatively to gain insight into the correlation 
structure of  the genome. Identification of  genomic correlation 
is one of  the key mechanisms to appraise the degree of  epistasis 
and the effect it may have on evolutionary processes. Moreover, 
invariant genomic correlation is a good indication for strong ge-
netic robustness which is one of  the key mechanisms that may 
results in punctuated evolution. 

In this study, we used novel PCA based approaches suitable for 
massive sequencing technology to scan for patterns of  genomic 
divergence. Our framework is different from pairwise distance 
based methods in few aspects: first we rather compute a distance 
matric between all M. musculus strains with M. spretus. This allows 
us to increase certainties regarding speciation having one common 
reference against many strains. Moreover, identification of  minor 
components with biological meaning stemming from subspecific 
divergence is made without pre-computation of  genetic distance 
within M. musculus and is a proof  of  concept that subspeciation 
can be inferred from the ortogonality of  correlation flux between 
speciation and subspeciation. One of  the main drawbacks in our 
study is the unequal size of  laboratory and wild strains (having 
only three wild subspecies and 14 laboratory strains) which may 
affect the results. However even if  such a bias could exist we dem-
onstrate that PCA projection successfully made a clear discrimi-
nation between wild and laboratory strains in both, loadings and 
score distribution. 

Our results indicate on two main eigenvectors that can be equated 
to subspecific and intersubspecific origin. We find that in many 
aspects, the two processes are orthogonal and different in nature. 
While speciation is identified by Gaussian distribution suggesting 
that most of  the genetic variation is common for all DNA seg-
ments, intersubspecific variation show tailed distribution indicat-
ing that only small amounts of  variation is responsible for the 
process. This insight is further supported by careful examination 
of  the variance and the loading profile of  the first two principal 
components. While the PC1 captures > 90% of  the total variabil-
ity with a common loading profile for all M. musculus strains, PC2 
decline dramatically to ~ 2% of  the variability and therefor indi-
cates on robust correlation structure. Interestingly, the projection 
of  the second and the third principal components into 2D scat-
terplot demonstrates a robust non-stochastic universal 7 clusters 
distribution which is scaled invariants under any DNA segment 
length. Moreover, the orientation of  the clusters maintains the 
same position for any DNA segment lengths. We find that this 7 
clusters organization is robust only by projecting the autosomes 
of  wild-derived strains, however the seven clusters structure col-
lapses when projecting the genetic variation of  laboratory strain 
and of  the X chromosome. We have further used computer simu-

lation and illustrate that permutation of  only > 99% of  the DNA 
segments is needed to destroy the clusters into one single core re-
gion. All the results stated above illustrates that since the distance 
between DNA segments of  autosomes of  laboratory strains and 
of  X chromosome is much smaller than between autosomes of  
wild-derived subspecies, the signal due to correlation is less ap-
parent and thus cannot be captured by PCA projection. Inter-
estingly, this signal is only apparent when having more abundant 
SNP density which in turn can eliminate bias of  technical and 
stochastic noise. Recent study found similar seven ray clusters by 
examination of  codon frameshifts in microbial genome [10] . In 
that study, the authors concluded that such clustered organization 
is imprinted by the existence of  an ordered translation machin-
ery of  codons along coding regions. They further demonstrate 
that frameshifts results in non-ordered clustered shape. Even if  
not directly related to our study, the existence of  similar ordered 
structure of  codon frequency is important in illustrating possible 
phenomenological, yet not explained organization of  correlated 
variation along the genome.

Conclusion

In conclusion, our results illustrate that the genome is composed 
of  linked and correlated millions of  DNA segments which illus-
trate a scale invariant properties. Such a coherent correlation and 
non-stochastic organization is apparent and may give further sup-
port to robust regulatory machinery which exists in genome-wide 
scales and may have strong effect on the pace of  evolution and 
speciation.
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