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Introduction

Cancer constitutes many heterogeneous diseases [1] having var-
ied genetic and epigenetic abnormalities [2, 3] afflicting millions 
of  people globally. Despite substantial progress in elucidating 
the complex molecular mechanisms underlying its cause [4], im-
provements in terms of  therapeutic index have largely remained 
unchanged, while concomitant increases in the death rates have 
been steadily climbing over the past five decades [5, 6]. Failure to 
deliver effective treatment to cancer patients in the past has been 
the inability to get enough of  the drug in the right amounts and 
form, and to the right place.

The traditional drug delivery methods, which basically include the 
Oral and IV routes of  administration, are still the most widely 
used today, yet each has its disadvantages. Oral delivery via tablets 
or capsules is largely inefficient due to exposure of  the pharma-
ceutical agent to the metabolic processes of  the body. Therefore, 
a larger dose is often required while not compromising the maxi-
mum effectiveness of  the drug. Traditional IV administration is 
even much more problematic. Specificity for IV injectable drugs 
is often low, necessitating large amounts of  a drug be injected into 
a patient, creating a high concentration of  the drug in the blood 
stream that could potentially lead to toxic side effects. The poten-
tial of  eliminating a tumorous outgrowth without any collateral 
damage through nanomaterial-based drug delivery has created 
significant interest and nanoparticles form the basis for bio nano-
materials [7] and major efforts in designing drug delivery systems 
are based on functionalized nanoparticles [8, 9]. As postulated by 
Paul Ehrlich in 1906, an ideal therapeutic agent, is one that works 
like a “magic bullet”, by reaching exclusively, its target [10].

This concept has been advanced by encapsulating drugs into 
various nanoscale delivery systems, in order to enhance its tar-
get specificity. The main idea is to make drug fate dependent on 
the carrier in which it is encapsulated. Throughout various fields 
of  science and technology, a push towards the use of  nanoscale 

technology for medical interventions is well underway. The use 
of  nanotechnology (particles between 10 nanometers and 1000 
nanometers in size) in medical applications (i.e. nanomedicine) 
has the potential to produce low-cost, self-replicating systems that 
could revolutionize the scientific landscape [7].

Earlier work with micro-carriers, soon gave way to nanocarriers 
because these could be administered either locally (eye, lungs, 
nose, etc.) or systemically (intravenously). Further, their small size 
enhances intracellular diffusion, which is a big boost for molecu-
lar medicine. For more than 40 years, research into the therapeutic 
abilities of  drug-loaded nanocarriers has become a burgeoning 
science [11-13], resulting in the term nanomedicine, i.e. biode-
gradable and/or biocompatible submicron-sized colloidal parti-
cles encapsulating a drug. Recent advances into physical and bio-
chemistry have resulted in nanomedicines of  various architectures 
and surface properties [14-16].

This review first presents the various types of  foundational ma-
terials for nanomedicines, followed by the physiological barriers 
encountered, and finally, how these barriers can be overcome. Al-
ternative routes of  administration, new trends in biotherapeutics, 
nanomedicine and nanotheranostics are also discussed.

Different Types of  Nanomedicines

The materials used to synthesize nanomedicines range from or-
ganic molecules to inorganic ones. Liposomes are the very first 
nanomedicines and consist of  vesicles in an aqueous suspension, 
with each vesicle comprising a bilayer composed of  natural or 
synthetic phospholipids (Figure 1). Their size can be adjusted by 
extrusion or sonication. Hydrophilic drugs such as doxorubicin 
[17] or 5-fluorouracil [18] can be encapsulated in the internal core, 
while hydrophobic or amphiphilic drugs such as amphotericin B 
[19] are inserted within the bilayer. The type of  phospholipid 
matrix can affect the encapsulation efficacy and the fate of  the 
liposomes after systemic administration. The upscaling of  lipo-
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somal formulations may be limited drug leakage, non-specific tar-
geting, the physical stability of  the dispersions, and clearance by 
the mononuclear phagocytic system (MPS) [20].

Liposomes are small artificial and spherical vesicles that have at 
least one lipid bilayer. It usually has an aqueous solution core sur-
rounded by a hydrophobic membrane, in the form of  a lipid bi-
layer. A liposome can hence be loaded with hydrophobic and/or 
hydrophilic molecules. By preparing liposomes in a solution of  
DNA or drugs (which cannot readily diffuse through the mem-
brane) they can be (indiscriminately) but homogeneously deliv-
ered past the lipid bilayer [21]. To deliver the molecules to a site of  
action, the lipid bilayer can fuse with other bilayers such as the cell 
membrane, in order to deliver the liposome contents. Their size, 
hydrophobicity and hydrophilicity of  liposome systems render 
them very promising for drug delivery. Liposomes are generally 
classified based on their size, surface charge, lipid composition, 
and the method of  preparation. Further more, the bilayer compo-
sition determines the charge and fluidity [22-24].

Lipid nanoemulsions are lipid-based nanosystems used for drug 
encapsulation. They consist of  layers of  lipid droplets surround-
ed by a layer of  surfactant (Figure 1) which can encapsulate hy-
drophobic soluble drugs in the lipid core. They can also entrap 
amphiphilic molecules [25] or adsorb macromolecules through 
electrostatic interactions [26]. Apart from the significant energy 
involved in their production, one other major disadvantage of  na-
noemulsions is their poor stability after systemic administration. 
High levels of  surfactants used to stabilize nanoemulsions have 
been reported to have serious deleterious effects [27].

Solid lipid nanoparticles (SLNs) are another class of  lipid-based 
nanoparticles, which bear the advantages of  physical stability, 
protection from degradation, tolerability, and controlled release. 
SLNs have a solid lipid core (usually triglycerides or complex 
glyceride mixtures) which are stabilized by a layer of  surfactant 
(Figure 1). Majority of  hydrophobic SLN-containing drugs are 
prepared from solvent emulsification-evaporation methods [28].
Most of  the lipids which are cationic in nature have been used in 
formulating iRNA, DNA, and other oligonucleotides to yield na-
nomedicines [29]. Because cationic lipids can condensate nucleic 
acids to form nano-objects due to their electrostatic interactions, 
they protect nucleic acids from degradation, thereby enhancing 
their entry into cells to release their payloads. Polymer nanoparti-

cles have been the second most used materials for nanomedicine 
formulations. Their biodegradability properties made them even 
more suitable for human applications. Increasing research point 
to greater use of  nanoparticles than liposomes due to their better 
stability, allowing for the successful encapsulation of  many drugs. 
Consequently, many different polymers such as poly (lactide-co-
glycolide), poly-dl-lactide, polysaccharides, and polyesters, have 
been synthesized and formulated for nanomedicines applications.

These polymers can also be formulated into nanospheres (ma-
trix systems) or nanocapsules (vesicular systems) depending on 
the method of  preparation. (Figure. 1). The preparation methods 
developed so far have been classified into two main categories; 
via a polymerization reaction or directly from a preformed poly-
mer. Nanoparticle preparation generally consist of  introducing a 
monomer into the dispersed phase of  an emulsion, or dissolving 
the monomer in a non-solvent of  the polymer. Polymerization re-
actions then occur in a nucleation step followed by a growth step. 

Two protocols have been presented for preparing nanoparticles 
from preformed artificial polymers. The first protocol is emul-
sification of  non water-miscible organic solutions of  preformed 
polymers into an aqueous phase containing surfactants, followed 
by removal of  solvents under reduced pressure. This method, 
named solvent emulsion-evaporation has already been applied to 
poly-dl-lactide [30]. This process can also be modified to yield 
capsules with a perfluorcarbon core within a polymer shell. This 
is then mixed in the solvent together with the polymer. To en-
capsulate hydrophilic drugs, a double emulsion (water-in-oil-in-
water) is formed with the internal aqueous phase (Figure 1). The 
second protocol is called nanoprecipitation, and is based on the 
precipitation of  a solvent polymer after adding a non-solvent of  
the polymer. The solvent and also the non-solvent of  the polymer 
should be reciprocally miscible. The progressive addition of  the 
polymer solution to the non-solvent typically ends up in the for-
mation of  nanospheres, generally not greater than two hundred 
nm in size. Polymeric micelles have additionally been proposed, 
stemming from the self-assembly of  amphiphilic copolymers, re-
sulting in spherical aggregates of  a few nanometers in diameter.
Since hydrophobic moieties sort out as a core, by encapsulating 
hydrophobic drugs they can modify their solubility and therefore 
their biodistribution. Amphiphilic copolymers can also form a bi-
layer that encloses an internal aqueous compartment called poly-
mersomes [31].

Figure 1. Schematic representation of  lipid nanomedicines (top) or polymers (bottom).
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One limitation of  classical nanomedicines is their low drug-load-
ing limit. Analysts have beaten this downside by orchestrating 
prodrug particles that can self-collect into nanomedicines. One 
such strategy squalenoylation, which is a concept involving the 
formation of  chemical linkage between a drug and squalenic acid, 
a primer of  cholesterol synthesis, followed by nano assembly of  
the new molecules via nanoprecipitation [33]. Molecules which 
have been successfully coupled to squalene, for example pacli-
taxel [34], siRNA [35] and nucleosides [36], have produced na-
nomedicines that have increased drug loading to around 50 % 
of  the bearer weight. Studies indicate a superior efficacy of  the 
prodrug nano assemblies as compared with the free drug in tumor 
therapy [37].

Materials utilized are not constrained to natural mixes and several 
groups have optimized inorganic nanomaterials to permit pro-
ficient encapsulation. Albeit, metal organic frameworks (MOFs) 
were originally developed for hydrogen storage, it has been dem-
onstrated that these can be modified to yield nanosized MOFs 
that epitomize medications such as azidothymidine (AZT) or bu-
sulfan with high drug loading capacities [38].

Crossing Physiological Barriers

One promising aspect of  nanomedicine is that nano-pharmaceu-
ticals have greater bioavailability. This property translates into the 
body absorbing the drug compound easier, faster and utilize it 
more effectively. Further, routes of  administration, such as in-
travenous, oral, transdermal, and pulmonary can be made easier. 
This is a huge improvement over many currently available drugs 
with poor bioavailability. As per their surface properties, they can 
be grouped into three generations. As non-self  particles after in-
travenous injection, nanomedicines are equally subjected to sev-
eral physiological barriers within the body. Their clearance may 
occur even before they arrive at the targeted diseased site. Un-
derstanding and successfully navigating the physiological barriers 
is therefore paramount in order to predict the fate of  injected 
nanomedicines and their biodistribution profiles.

Nanomedicines are typically prepared as colloidal suspensions or 
buffer solution, stability and fate of  which can be assessed after 

intravenous administration. In the presence of  salts, proteins and 
enzymes in the vascular compartment, nanomedicines can un-
dergo hydrolysis, cleavage or aggregation. Nanomedicines below 
ten nanometers are filtered from the blood stream via the glo-
merular capillaries of  the kidneys. In the case of  nanomedicines 
up to five hundred nanometers, and depending on their surface 
properties, opsonisation could occur, followed by macrophage 
take-up and sequestration in the liver, spleen and bone marrow. 
Their preferred accumulation in macrophages was exploited to 
treat intracellular infections by delivering antibiotics to infected 
macrophages [39].

Strategies to reduce opsonisation led to the second generation of  
nanomedicines which is characterized by passive tumor-targeting. 
To reduce opsonisation, one can consider surface modification 
with either natural or synthetic polymers (Figure 2). Reducing 
opsonisation means the reduction of  protein adsorption to the 
nanomedcines, and this increases the circulation time in the blood 
compartment, thereby increasing the half-life in the tumors as a 
result of  the enhanced permeation and retention (EPR) effect. 
Smaller nanomedicines extravasate more efficiently through ne-
ovessels. This feature of  PEGylated nanomedicines has led to 
the has resulted in the production and use of  Doxil®/Caelyx® 
in the clinic. It consists of  doxorubicin-encapsulated PEGylated 
liposomes, for the treatment of  cancer. Liposomal doxorubicin 
formulations reduce cardiac toxicity more efficiently than free 
doxorubicin. Indeed, clinical studies with equivalent doses PE-
Gylated liposomal doxorubicin or free drug increased the doxo-
rubicin levels in the tumor by about 16-fold when compared to 
the free drug [18].

The strategy of  passive targeting of  tumors has not been attrac-
tive since nanomedicines reaching their targets is usually below 
10 % of  the injected dose. Furthermore, since plasma protein 
adsorption deceases with PEGylation, uptake by the RES is also 
decreased. It has also been observed in the clinic that the EPR 
effect is only functional in certain patients [25]. Finally, research 
in animals suggest that intravenous injections of  the liposomes 
could trigger an immune response leading to rapid clearance of  
the PEGylated liposomes after a second injection [43]. Attention 
has recently been shifted towards several biopolymers such as 

Figure 2. Schematic representation of  the plain, PEGylated and targeted liposomes.
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polysaccharides to replace PEG in the formulations [44].

The third generation of  nanomedicines relies on active targeting. 
Active targeting has so far been the most effective by way of  ap-
plying external magnetic field to increase local concentration. Sev-
eral authors explored this strategy by placing the superparamag-
netic iron oxide (SPIO) over subcutaneously implanted tumors, 
leading to enhanced tumor-specific accumulation. This targeting 
strategy has however been difficult to translate to the clinic due to 
the skills need in implanting a magnet near the tumor site.

Alternatively, there is the chemical approach by coupling the na-
nomedicine surface with targeting ligands such as antibodies [45], 
peptides [46], proteins [47], aptamers [48] or small molecules such 
as folic acid [49], that recognize receptors on the tumor site. (Fig-
ure 2). Active targeting reduces significantly non-specific bind-
ing compared to ligand-receptor interactions. Usually a spacer is 
needed between the ligand and the nanoparticle. Consequently, 
the best site is to attach the ligand at the extremity of  the polymer 
coating to avoid opsonisation.

Active targeting was based on the hypothesis that biomarkers like 
integrins are over expressed on neovessels or epithelial cells, and 
that the expression differential between targeted and non-target-
ed tissues could be as high as ten. Active targeting hence allows 
greater uptake of  nanomedicines due to enhanced receptor-me-
diated endocytosis. Nevertheless, because the biomarker expres-
sion varies with the stage of  the disease, the expected response to 
targeted nanomedicines could be affected. There is a school of  
thought that is proposing that exclusive receptors for malignant 
cells should also be considered. A typical example is Glypican 
(GPC), which is absent in normal tissue but over-expressed in 
hepatocellular carcinoma. A proof  of  principle study by Park et 
al. [33], demonstrated the specific uptake by Hep G2 cancer cells 
using anti-GPC3 antibody-encapsulated PEGylated nanoparti-
cles.

Beyond the Intravenous Route

Apart from the classical intravenous administration, other routes 
of  administration for nanomedicines such, as the oral, pulmonary, 
and the ocular route are under consideration. The oral route, how-
ever, seems to be the most preferred choice by the pharmaceutical 
industry, perhaps due to the ease of  application. Even though 
nanomedicines can protect the degradation of  labile drugs (like 
insulin) by the acidic gastric pH, many of  the successfully devel-
oped nanomedicines encapsulating insulin for oral delivery are yet 
to reach the market, presumably because of  the narrow thera-
peutic window. The idea of  extending the residence time in the 
intestine in order to favour drug absorption has resulted in the use 
of  bioadhesive polymers such as chitosan or thiolated chitosan on 
the nanoparticle surface [51].

In the area of  pulmonary delivery, either locally or systemic, na-
nomedicines have also been quite successful. Pulmonary delivery 
of  targeted nanomedicines at the vascularized alveoli, is a better 
alternative than the parenteral route since it allows the administra-
tion of  poorly absorbed molecules. The bioavailability of  nano-
particles after lung administration via liquid nebulization or dry 
powders encapsulated into Trojan particles has seen some success 
[52].

Nanomedicines have also been quite efficacious in ocular deliv-
ery were developed to extend the residence time of  the drug at 
the surface of  the eye. In particular, cationic nanoemulsions have 
been developed for the treatment of  the dry eye syndrome. In-
traocular injections of  nanomedicines have also been considered 
for the posterior segment of  the eye, but has not been very suc-
cessful due to the difficult in reaching its target by either topical 
administration or intravenous administration.

Nanotheranostics

One interesting system that has been developed is the attachment 
of  a contrast agent to the nanomedicine cohort to allow for im-
aging, diagnosis and treatment i.e. nanotheranostic system. The 
term theranostic is derived from the words therapy and diagnos-
tics. Nanotheranostic systems are therefore designed to image the 
biodistribution of  nanomedicines, diagnose, determine the extent 
of  disease spread, and also monitor its action and efficacy [52]. In 
nanotheranostic systems, there should be an optimal delivery of  
two payloads: the bioactive molecule (peptide, nucleic acid, chem-
otherapeutic drug etc.), and the imaging probe (quantum dots, 
fluorophores, etc.).

The most commonly used imaging modality has been Magnetic 
Resonance Imaging (MRI) because of  its excellent resolution 
and its ability to permeate several organs including the brain. 
Further, several MRI contrast agents (Gd chelates, super para-
magnetic iron oxides (SPIOs), ultrasmall super paramagnetic iron 
oxides (USPIOs), as well as perfluorocarbons (Figure 3) [53], have 
been developed and customized for easy co-encapsulation into 
nanomedicines. Analysis of  the release of  doxorubicin from li-
posomes, co-encapsulated with manganese as the MRI contrast 
agent has been extensively done [54], by comparing the measure-
ments from HPLC and histology, a method that has gained popu-
larity for effective imaging and evaluation of  chemotherapeutic 
protocols [55].

Optical imaging has been considered a visualization modality op-
tion for soft tissues in nanotheranostics, but their application is 
limited due to the scattering properties in the visible region of  
the light spectrum (less than 700nm). The scattering however 
decreases in the near-infrared region (700–900 nm), for optical 
imaging, commonly called the “biological window”. The NIR 
fluorescence dye Cy5.5 has been used to label paclitaxel-loaded 
chitosan-based nanomedicines [55]. In vivo, NIR fluorescence in 
vivo clearly delineated the tumor and signal intensity correlated 
with nanomedicine concentration. Optical imaging also clearly 
depicted the nanomedicine biodistribution and allowed the moni-
toring of  the tumor growth rate in response to treatment (Figure 
4) [55]. Even though optical NIR probes besides organic dyes, 
such as quantum dots, can also be loaded into nanomedicines, it is 
important that the observed tissues be located close to the radia-
tion source since the depth of  NIR light penetration in tissue is 
less than 1 cm. Currently, clinical use of  optical imaging remains 
limited.

Conclusion

Nanomedicines have evolved as the next generation of  thera-
peutics due to the recurring issues with poor bioavailability, poor 
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stability, drug toxicity, and harmful side effects of  the traditional 
means of  drug administration. Nanomedicines are derived from 
organic and inorganic materials and their physical and chemical 
properties can be adjusted for specific applications. As a result of  
advanced research, nanomedicines have been tuned for oral, ocu-
lar or intravenous delivery. The new concept of  nanotheranostics 
seem interesting with great potential as a therapeutic modality, but 
remain to be fully explored for clinical use.

Quite a number of  studies have been carried out on the toxicity 
of  nanoparticles, but there is currently no acceptable protocol for 
safety assessment of  nanomaterials. A clear regulatory framework 
to address the potential health impacts, within the wider context 
of  monitoring, evaluating and assessment, must be an integral 
part of  efforts towards nanotechnology innovation. Commercial-
ly, nanotechnology is expected to contribute over five trillion dol-
lars to GDP by the 2025. Therefore, rigorous research, that will 
attract commercial investment in nanotechnology, should provide 

an overall societal benefit. Overall, nanomedicines will have to be 
upgraded from preclinical research to clinical application if  the 
toxicity issues are better predicted and the scale-up and engineer-
ing of  these complex structures prove profitable.
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