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Introduction

MRI (MR) imaging is primarily related to the production of  ana-
tomical images, while in the MRS method, instead of  an image, 
we will have a spectrum of  the range of  MR signals according to 
their intensity frequency (in Hertz or ppm) [1-38]. The signals re-
corded by MRI are mainly from protons in water and fat. In MRS 
studies other than hydrogen nucleus, other nuclei such as 31P, 7Li, 

19F, 23Na and 13C have been used, which contain physiological 
information. By comparison, MRS aims to analyze the chemical 
composition of  tissues in a very small number of  much larger 
voxels [39-76]. The signal–to–noise ratio in MRS is lower than 
in MRI, therefore, the volume of  selected voxels is considered 
larger for MRS. MRI removes chemical shift information, while 
the purpose of  MRS is to enhance this information qualitatively 
and quantitatively [77-114].
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Abstract

Molecular imaging is a new method in examining physiological studies in molecular dimensions. Among the various methods 
that have been introduced for this purpose, the magnetic resonance spectroscopy (MRS) method has made it possible to more 
accurately study the activities of  the brain region as well as tumors in different parts of  the body. MRS imaging is a type of  
non–invasive imaging technique that is used to study metabolic changes in the brain, stroke, seizure disorders, Alzheimer's 
disease, depression and also metabolic changes in other parts of  the body such as muscles. In fact, since metabolic changes in 
the human body appear faster than anatomical and physiological changes, the use of  this method can play an important role 
in the early detection and diagnosis of  cancers, infections, metabolic changes and many other diseases.

Keywords: CERN; Large Hadron Collider (LHC), Radiation Source, Magnetic Resonance Biospectroscopy, Metabolic and 
Molecular Imaging, Diagnosis of  Cancer.
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For cancer treatment, it is critical to be able to identify key bio-
molecules and molecular changes associated with cancer and 
harmful things, as well as to monitor the medically beneficial 
results against these targets. People who work to find informa-
tion and doctors now have new tools to improve most aspects of  
cancer care thanks to recent developments in molecular imaging 
based on magnet–based (MR) methods. The broad definition of  
molecular imaging is "imaging techniques for detecting molecular 
signatures at the cellular and expression (tiny chemical assembly 
instruction inside of  living things) levels. “This article discusses 
the (possible power or ability within/possibility of) these ways 
of  doing things in improving medicine–based cancer care and re-
views both established and newly appearing molecular MR meth-
ods in cancer–related medical care. It also talks about how mo-
lecular MR, as well as other ways of  doing things with functional 
MR imaging (related to what holds something together and makes 
it strong), paves the way for custom–designed cancer treatment 
(success plans/ways to reach goals) [115-152].

Breast cancer is a common disease that affects women. It is the 
second leading factor in women's cancer–related deaths. Related 
to food processing and use), reprogramming takes place during 
the growth of  cancer, sudden, unwanted entry into a location, 
and disease spread throughout the body. Body–structure–related 
and molecular processes have shown (possibility of/possibility of  
happening of) illustrating body–structure–related and molecular 
processes changes before (related to body structure) visible signs 
on ordinary MR imaging, as shown by functional magnet–based 
(MR) methods containing/making up an organized row of  ways 
to do things. One of  these is in vivo proton (1H) MR spectros-
copy (MRS), which is widely used to distinguish breast cancer 
from other diseases by measuring compounds that contain more 
choline. In addition, the understanding of  glucose and phospho-
lipid (chemically processing and using food) was enhanced by the 
utilization of  hyperpolarized 13C and 31P MRS. In vitro bright 
and sharp NMR spectroscopy and bright and sharp magic angle 
spectroscopy (HRMAS) can also be used to closely examine med-
ical samples and examples (unharmed and in one piece tissues, 
tissue extracts, and various biofluids such as blood, urine, nipple 
breathes/inhales, and fine needle breathes/inhales) to gather in-
formation about the (related to processing and using food) body 
functions of  living things. In addition to providing a deeper un-
derstanding of  cancer (study of  living things/qualities of  living 
things) and chemically processing and using food, such studies 
can provide information on more metabolites than seen by in vivo 
MRS. The tumor subtypes were classified after a large number of  
NMR data sets related to ghosts or rainbow colors were analyzed 
using multivariate methods related to studying numbers. It dem-
onstrated significant (possible greatness or power) progress in the 

creation of  novel medically beneficial strategies. By putting into 
numbers (related to what holds something together and makes it 
strong), vasculature, diffusion, perfusion, and (related to process-
ing and using food) (things that are different from what is usually 
expected) in vivo, multiparametric MRI approaches were found to 
be helpful in explaining how a disease works, particularly cancer. 
This review focuses on how NMR, MRS, and MRI can be used to 
understand breast cancer (study of  living things and their quali-
ties), identify a disease or problem or its cause, and monitor breast 
cancer in a way that is helpful to medicine [153-183].

Results and Discussion

MR spectroscopy analyzes molecules such as hydrogen ions or 
protons. Proton spectroscopy is more common. There are several 
metabolites or metabolic products that can be measured to dif-
ferentiate between tumor types: Lactate or Lac N–acetyl aspartate 
or NAA Choline or Cho Creatine or Cr Myo–inositol or Myo 
Glutamate and Glutamine or Glx Lipid. The abundance of  these 
metabolites is measured in units called parts per million (ppm) 
and plotted as peaks of  different heights on the graph. The hor-
izontal axis of  the spectrum indicates the amount of  chemical 
shift of  each of  these materials and the vertical axis indicates the 
amount of  this chemical shift, which is the same signal result-
ing from the magnetic intensification of  the core. By measuring 
the PPM of  each of  the mentioned metabolites and comparing 
them with normal brain tissue, neurologists can determine the 
type of  tissue present. MR spectroscopy can be used to deter-
mine the type of  tumor and whether it is malignant or benign, 
etc. Simultaneously with the discovery of  MRI, the chemical shift 
effect was also identified. Chemical shift (chemical shift) is the 
basis of  MRS. The origin of  this effect is the response of  the 
electrons of  a molecule to the magnetic field [115–152]. In the 
MRI discussion, the nucleus or proton is affected by an external 
field with intensity B0 and therefore rotates around the field with 
the Larmor frequency, but the electrons themselves also create a 
protective effect or shield around the proton or nucleus, which 
is called the shielding constant. we say. The greater the electron 
cloud and the number and characteristics of  the electronegativity, 
the greater this protection is, and therefore the nucleus does not 
see the actual external value of  the field, so we expect hydrogens 
that are in tissues with less electron shielding to see a greater ex-
ternal magnetic field and according to the Larmor relation They 
rotate faster around the external field, while for tissues such as fat, 
where hydrogen protons have stronger bonds with carbons and 
electron shields, they rotate slower with the Larmor frequency 
[153-183]. In fact, different metabolites have different hydrogen 
bonds and considering that the chemical shift in them differs ac-
cording to what was mentioned, we can use it in Spectroscopy. 

Figure 1. The phase methods in two directions were extended to two dimensions and subsequently to three dimensions 
with three–dimensional coding using MRSI coding gradients.
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In general, two different approaches are used in proton spectros-
copy: Single voxel method that uses a sequence of  STEAM or 
PRESS pulses and spectroscopic imaging methods that are also 
known as chemical shift imaging or CSI. In the first attempts to 
perform spectroscopic imaging, which is also referred to as MRS, 
the one–dimensional method was performed using phase cod-
ing in one direction. By using MRSI coding gradients, the phase 
methods in two directions were extended to two dimensions and 
subsequently to three dimensions with three–dimensional coding, 
which are called chemical shift imaging (Figure 1).

While most single voxel studies are performed in short TEs. MRSI 
studies are performed in long TEs. Low TE spectra contain the 
signal of  a greater number of  compounds and as a result better 
SNR, but their contamination with water and fat is also more. In 
contrast, high TE spectra have lower SNR, less visible compounds 
and different T2–weight values, but they have spectra with more 
separated resonances and a smoother background. The choice of  
method depends on the information needed in a specific medical 
or research application. For example, if  spectroscopy is used to 
find the location of  a stroke or seizure center in the brain, the 
microscopic extent of  tumors and the intensity of  tumor invasion 
in the prostate and brain, the CSI method is preferable because it 
is able to create a map of  the amount of  metabolites in order to 
diagnose lesions. Scattered to be used in different places. But if  
the tissue is studied in order to check the composition change at 

a specific point, the single voxel spectroscopy method will be the 
chosen method (Figure 2).

It is a non–invasive method. It can be used to monitor the chemi-
cal changes of  tissues. We can simultaneously evaluate several me-
tabolites. Two examples of  where MRS is very helpful in the brain: 
The invasion of  the tumor (Glioblastoma multiform (GBM) into 
the surrounding tissues, which is not clear in normal T2 images, 
but can be determined by MRS. By MRS, it is possible to distin-
guish two types of  lesions that look similar to each other in nor-
mal MRI images (such as tumor recurrence and tumor necrosis 
after radiotherapy). MRS imaging has found wide applications in 
the field of  cancer diagnosis. Among the fields of  clinical applica-
tion of  MRS, we can mention the diagnosis (between normal and 
cancerous tissue, different types of  cancer and neoplastic from 
non–neoplastic), designing the best treatment regimens for each 
patient, and monitoring the patient after treatment. MRS in tu-
mors: In brain tumors, spectroscopy can determine the degree of  
malignancy. As malignancy increases, NAA and creatine decrease 
and choline, lactate and fat increase. Fat is seen in the necrotic 
parts of  the tumor. Lactate concentration increases in rapidly 
growing tumors due to anaerobic glycolysis. Diagnosing tumor 
recurrence from the effects of  radiotherapy: Increased choline is 
a marker for tumor recurrence. Changes due to radiotherapy usu-
ally decrease NAA, creatine and choline. If  necrosis has occurred 
as a result of  radiotherapy, fat and lactate can also be seen in 

Figure 2. Schematic of  single voxel spectroscopy method.

Figure 3. Different spectra metabolites in different areas of  the human body.

Figure 4. Infiltrating macrophages of  cancer cells in interaction with hypoxia acidic pHe substrate deprivation.
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the spectrum. Molecular imaging using spectroscopy Cerebral is-
chemia and infarction: When the brain suffers from ischemia, an-
aerobic respiration of  glucose is used and lactate increases. Cho-
line increases and NAA and creatine decrease. If  it happens after 
ischemia, the fat signal is also seen. trauma: It is a useful method 
to assess the degree of  nerve damage and predict the results. The 
clinical consequences are opposite to the NAA/Cr ratio, and the 
observation of  lactate and fat indicates the seriousness of  the 
condition. infectious diseases: decrease naa Inside the abscess, 
lactate, alanine, cytosolic acid and acetate increase. Alzheimer: In 
the advanced stages of  Alzheimer's, NAA decreases and myo–
inositol increases. MS: The increase of  choline and lactate has 
shown that the increase of  choline can be due to the increase of  
phospholipid as a result of  breaking the myelin of  the cell and the 
increase of  lactate is due to the increase of  the anaerobic respira-
tion of  the cell due to the increase of  the cell metabolism. In ad-
dition, there is evidence of  increased lipids, and most importantly, 
decreased NAA, which is caused by nerve damage. And recently, 
it has been found that glutamate and myoinositol levels increase 
in acute MS lesions. Parkinson: In most studies in Parkinson's dis-
ease, no changes in metabolites have been observed, only when 
Parkinson's has caused brain atrophy, a decrease in NAA in the 
basal ganglia has been observed (Figures 3–6).

Conclusion, Summary, Outlook and Future Direc-
tions

MRS imaging method is a new method in molecular imaging that 
can be used in different types of  differential diagnoses. Among 
the areas of  clinical application of  MRS, we can mention the di-
agnosis (between normal and cancerous tissue, different types of  
cancer and neoplastic from non–neoplastic), designing the best 
treatment regimens for each patient, and monitoring the patient 
after treatment. This method can solve the lack of  ability of  MRI 
method in examining pathology.

Measurements of  molecular and cellular processes, such as the 
chemical processing and use of  food, cell death, cell growth and 
spread, and biosynthetic pathways of  various metabolites in vivo 
in cancer, can be made using molecular MR imaging. Every aspect 
of  cancer–related medical care, including early disease detection, 
identification of  a disease or problem or its cause, staging, per-
sonalized treatment, and treatment monitoring/supervision, can 
benefit from molecular imaging. Ovarian, lung, and male repro-
ductive gland cancer are just a few of  the many types of  cancer 
for which molecular imaging had a significant impact on patient 
care. Detecting and curing disease in its most treatable phase, as 
well as saving a large number of  lives, may be possible with mo-
lecular imaging's ability to detect (things that are different from 
what is usually expected) very early in the (development or in-
crease over time/series of  events or things) of  disease. This could 
shift medicine away from causing reactions from other people or 
chemicals and toward preventing problems before they occur. In 
clinical arrangement, sub–atomic X–ray will make ready toward 
a major improvement in early discovery of  illness, treatment ar-
ranging and watching/overseeing the restoratively supportive out-
comes.

This survey momentarily introduced the (conceivable power or 
capacity inside/probability of) X–ray and MRS–based techniques 
in figuring out bosom malignant growth (investigation of  living 
things/characteristics of  living things) and the job of  various MR 
biomarkers in illness (recognizable proof  of  a sickness or issue, or 
its goal), (proclamation about a potential future occasion), (look-
ing at and testing so a choice can be made), medicinally supportive 
watching/managing, and cancer (rehashing occasion).Numerous 
metabolites were found in breast cancer patients through in vitro 
bright and sharp NMR studies of  tissue extracts, nodes, serum, 
and blood plasma samples. More than two, but not many, me-
tabolites, membrane metabolites like tCho and GPC, and amino 

Figure 5. Schematic of  different steps of  CERN Large Hadron Collider (LHC) radiation source for magnetic resonance 
biospectroscopy in metabolic and molecular imaging and diagnosis of  cancer.

Figure 6. Simulation of  CERN Large Hadron Collider (LHC) radiation source for magnetic resonance biospectroscopy in 
metabolic (left) and molecular (right) imaging and diagnosis of  cancer.
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acids like Ala, Glu, Gln, Lys, His, Gly, Ser, and Tau, as well as legal 
and law–based machines, methods, and ways, were shown to have 
changed in response to the changes. In addition, these metabolites 
could be used as disease–specific and prediction–related biomark-
ers in the treatment of  breast cancer.

The molecular mixed–up nature of  tumors was also connected 
to the mixed–up nature of  tumors, which was related to food 
processing and use. However, a comprehensive and thorough de-
scription of  the mixed–up nature of  breast cancer (damage to 
body parts) is required in relation to food processing and use. 
X–ray and MRS are currently being utilized as (partner/helping) 
approaches to getting things done to clinical bosom tests, histol-
ogy, and alternate approaches to getting things done. Information 
on tumor cellularity, perfusion, and stiffness are provided by MRI, 
which combines them to produce something superior. RI has 
emerged as an important tool for (determining the value, quantity, 
or quality of) the population of  women at high risk over the past 
few years. The use of  MRI in the detection of  cancers that are oc-
cult on a mammogram has been demonstrated in numerous stud-
ies. However, due to its technical difficulties, breast MRS is still 
not performed regularly. MRS’s sensitivity is also constrained by a 
number of  technical factors. However, recent computer and sci-
entific advancements, like improving the design and sensitivity of  
breast coils and high–field MR systems, may be able to enhance 
the breast MRS's quality of  being very close to the truth or true 
number. Even though the methods of  MRI and MRS showed or 
told about a lot of  biomarkers as potential candidates, they are 
only used in research labs at this time for (more than two, but 
not a lot of) reasons like technical difficulties and higher costs for 
procedures, equipment not being available, etc. For these markers 
to be used in clinics to provide decorated (with a personal touch) 
health care, they need to be developed with greater reproducibil-
ity.

Using MR techniques, it is necessary to demonstrate various his-
tological types of  breast cancer for a comprehensive understand-
ing of  its mixed nature. The ability of  these methods to identify 
diseases may improve as a result of  this. In addition, there is a re-
quirement for simple, automated acquisition, learning, and post–
processing sets of  computer instructions that can be visualized 
(in your mind) and converted into numbers for Cho in tumors 
of  a small size. The cost of  MR procedures for more applica-
tions should be the primary focus of  future research. Additionally, 
multi–center studies on the application of  MRI and MRS strate-
gies in medicine–based settings are required to "combine" them 
into a single unit. NMR spectroscopy of  biofluids in women at 
risk for (related to things you get from your parents' genes) is also 
necessary to (figure out the worth, amount, or quality of).This is 
a potential area for future research that could aid in the classifica-
tion of  women at high risk for cancer and provide an early indica-
tion of  the vulnerable population. In addition, it is crucial to carry 
out metabolomics studies in a well–organized manner in order to 
discover robust and healthy biomarkers for the (identification of  
a disease or problem, or its cause), as well as the outlook for the 
disease. The results of  metabolomics research ought to be trans-
lated into the development of  overly straightforward methods 
that could be easily implemented in medicine–based settings with 
low–cost effects, recommendations, and results. Long/big multi–
center (acts of  asking questions and attempting to find the truth 
about something) is required by recent methods like MR elastog-
raphy. Utilizations of  radiomics need to be thoroughly investigat-

ed, and X–ray practitioners need to gain a better understanding of  
the fundamental concepts, the creation of  reproducible (done or 
made to look the same every time) sets of  computer instructions, 
and the sharing of  data for medicine–based applications.
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