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Introduction

In the last couple decades, the rapid evolution of  imaging methods 
shed light on previously unknown entities. These findings 
confirmed discoveries from as early as the nineteenth century, 
when forms of  small vessel disease were first documented. 

Today, these entities have gained an important role in daily clinical 
practice, due to the fact that not solely the immensely developed 
technology can depict them, therefore clearing the way for 
expansive research. There has been numerous investigations for 
the better understanding of  the radiological and histopathological 
concepts of  cerebral microbleeds; but recently, most studies 
have been focusing on their clinical relevance such as cognitive 
impairment and a possible role as an imaging marker for brain 
hemorrhage.

Cerebral Microbleeds Definition and Imaging

Cerebral microbleeds are radiologically defined lesions visible on 
magnetic resonance imaging (MRI). They were first documented 
simultaneously by Chan, Greenberg and Offenbacher in 1996 [1]. 
The detailed pathology behind the lesions were described in 1999 
by Fazekas as cerebral amyloid deposition and lipohyalinosis in 
cases of  intracerebral hemorrhage [2], however the very same 
year Tanaka published another explanation pointing out the role 
of  damaged arteriosclerotic microvessels [3]. Most studies agree 

that microbleeds indicate sites of  accumulated hemosiderin-
containing macrophages [2, 3] that arise owing to the submerged 
transport system from the iron-rich breakdown of  minute 
hemorrhages from the damaged network of  vessels [4]. Once they 
become visible, they scarcely disappear: the low rate of  export 
of  hemosiderin suggests a small number of  true resorption and 
the dominance of  possible artifacts [5]. Other suggestions of  
their origin include a hypothesis that they are results of  parallel 
pro-inflammatory pathways activated by vasculopathy [6]; and 
a preposition presenting that age-related disorders of  ferritin 
transport and storage might take notable part in microbleed 
pathomechanism [7].

Cerebral microbleeds are small, round, homogenous, hypointense 
lesions depicted by gradient recall echo (GRE) or susceptibility 
weighted (SWI) imaging (Figure 1) [8]. Both methods provide 
increased contrast between the paramagnetic material and 
brain tissue [9], however SWI is proved to be 50-70 percent 
more efficient than the GRE sequence, and currently the most 
sensitive in detecting microbleeds. Combining high-pass filtered 
phase information with images of  multiplied magnitude [8, 10, 
11]; contributes to augmented contrast and increased blooming 
effect [8, 10]. The appearance of  cerebral microbleeds is highly 
dependent on imaging parameters including the sequence itself, the 
spatial resolution, magnetic field strength and the post-processing 
[8]. Studies have reported a 30 percent rise in identification of  
microbleeds with 3.0T field strength compared to 1.5T [12], 
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moreover, the ultra-high resolution 7.0T field strength MRI seems 
to overcome these results [10]. Not solely the microbleed number 
but size is also contingent on these imaging parameters, and due 
to the blooming effect, MRI results are unable to measure the 
exact size of  the lesions. Cerebral microbleeds are often bimodal 
in their size distribution, ranging from 2 mms to 5-10 mms with a 
cut-off  at 5.7 mms [1, 8, 13].

The neuroimaging concensus criteria for detecting cerebral 
microbleeds involve the following key points: (1) homogenous 
foci on GRE or SWI, (2) round or ovoid in shape, (3) small in 
size - mainly 2-5 to 10 mms, (4) they present with blooming effect, 
(5) they devoid signal hyperintensities, (6) surrounded by brain 
parenchyma, (7) diffuse axonal injury and secondary causes are 
excluded and (8) microbleed mimics are ruled out [1, 8].

These microbleed mimics refer to various sites of  calcification 
or iron deposition (mainly choroid plexus, basal ganglia and the 
pineal gland, cross-sectional vessels in the sulci, deoxyhemoglobin
containing structures, air in the sinuses and bone artifacts along 
with secondary causes, particularly vascular malformations, 
metastatic tumors and diffuse axonal injury [8]. Differential 
diagnosis requires other imaging sequences to rule out the 
non-hemorrhagic lesions, artifacts and secondary phenomena 
that appear identically to microbleeds. In order to minimize 
misdiagnosis due to coexisting mimics, the standard imaging for 
cerebral microbleeds should include SWI or GRE, T1, T2, FLAIR 
and DWI sequences along with conventional head CT [1, 8].

Currently, manual rating scales, including Brain Observer 
MicroBleed Scale (BOMBS) and Microbleed Anatomical Rating 
Scale (MARS) are proved to be useful in clinical settings. BOMBS 
categorizes microbleeds by their size, side and location (deep, 
lobar, posterior) [14]. The MARS scale provides a slightly more 
sophisticated approach primarily classifying microbleeds as 
‘definite’ or ‘possible’, then registering the side and the location 
similarly to the BOMBS method except for the size, which appears 
to be unnecessary in the scaling system (Figure 2). These alterations 
offer a good to very good inter- and intrarater variablilty of  the 
microbleed assessment [15]. Automated detection methods are 
also available, however despite their very high sensitivity, they are 
overly deficient in specifity; making manual evaluation the gold 

standard [16]. However semi-automated methods requiring visual 
censor for false positives would reshape current time-consuming 
procedures [16, 17].

Cerebral Microbleeds in the General Population

The Rotterdam Study has been a pioneer in the research of  
cerebral microbleeds. Over twelve thousand brain scans have 
been processed since the beginning of  the study in 1995 and 
almost 4000 scans were evaluated for cerebral microbleeds [18]. 
15.3% of  the study population had microbleeds, including 5.4% 
with multiple microhemorrhages. Age seems to play significant 
role in the appearance of  microbleeds: they were detected in 6.5% 
of  the patients between the age of  45 and 50, which increased to 
35.7% among individuals over 80 years of
age [18, 19].

This research group also suggested that microbleeds could 
demonstrate the worsening of  the underlying brain lesions, 
therefore a longitudinal study including 831 patients was 
additionally performed. The mean interval between examinations 
was 3.4 years, whilst 10.2% of  the patients developed new 
microbleeds, increasing the overall prevalence from 24.4% to 28%. 
If  baseline microhemorrhages were present, new microbleeds 
appeared with the odds ratio of  5.36; moreover, this number 
escalated to 7.15 if  multiple microhemorrhages were present. 
This study found that besides their number, microbleeds at 
baseline also predicted location; two thirds of  the newly evolved 
microbleeds were strictly lobar [5, 18].

The preferential distribution of  cerebral microbleeds reflect the 
primary pathology. Microhemorrhages are generally classified 
topographically as lobar, deep and infratentorial (Figure 3) [20, 
21]. Lobar microbleeds are associated with cerebral amyloid 
angiopathy, β-amyloid deposition and certain APOE genotypes 
[2, 21]. Lesions in the deep or infratentorial regions are preferably 
relate to vascular risk factors, mainly hypertension [19, 21]. Areas 
above the corpus callosum are most presumably due to traumatic 
injuries, while lesions in the thalamus and the basal ganglia imply 
to non-traumatic sources [22].

The tremendous number of  patients involved in the population-

Figure 1. Imaging of  Cerebral Microbleeds with Susceptibility Weighted Imaging. 

The small, homogenous, hypointense, round lesions are located in the lobar area in our patient from the Stroke Care Unit.
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based studies produced information on the risk factors of  
cerebral microbleeds: age, gender, hypertension, low cholesterol 
levels, statin therapy, retinal microvascular lesions, left ventricular 
hypertrophy and APOE 4 genotype, the latter showing strong 
correlation to strictly lobar microhemorrhages [5, 19, 23, 24]. 
The role of  the other alleles on APOE gene remain controversial 
as APOE 2 allele appears to cause fibrinoid necrosis, which 
contributes to the formation of  microbleeds, however statistics 
do not verify this hypothesis [19, 25, 26]. Microbleeds are also 
commonly associated with genetic conditions including cerebral 

autosomal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy (CADASIL) and Notch-3 protein mutation 
[27, 28]; polymorphysms of  neprilysin [9, 29] and the complement 
receptor-1 gene [30]; mutations of  collagen 4 1-subunit [31], 
APP and presenilin [32]; Fabry’s disease [33], familial multiple 
cavernoma syndrome and Tangier’s disease [34]. Cerebral 
microhemorrhages my appear in cases of  fat [35] and septic 
embolism [36], infective endocarditis [37], cerebral vasculitis [38], 
moyamoya disease [39] and they are also closely related to other 
subtypes of  small vessel disease [40, 41].

Figure 2. The Microbleed Anatomical Rating Scale (MARS).

Patient ID: Date of  Birth Date of  MRI

DEFINITE MICROBLEEDS: Small, round, welli-defined, hypointence on GRE T2*; 2-10 mm; not well seen on T2
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- Vessels: Linear/curvilinear lesions in subarachnoid space or juxta-cortial (visible on T2) 
- Mineralization in globi pallid or denate nuclei: symmetrical hypointensities (may be right flecks on CT)
- Haemorrahages within area of  infarction (look at the T2, FLAIR or DWI sequences to indentify infarction)
- Air-bone interfaces: frontal/temporal lobes (check adjacent GRE T2* slices to clarify)
- Partial volume artificial at the edges of  the cerebellum (check adjacent GRE T2* to clarify)
- Small haemorrhages close to a large ICH (visible on GRE T2*) or to an infarct (visible on T2, FLAIR or DWI)
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Gregoire et al., suggested a new, reliable concept by the subdivision of  the microbleeds to probable and definite lesions as the main 
concept of  the scale. These microhemorrhages are then classified as deep, infratentorial or lobar on each side [15].

Figure 3. Topography of  the Cerebral Microbleeds.

A. Cerebral amyloid 
angiopathy

Lobar 
microbleeds

Leukoaraisis

LacunesDeep 
microbleeds

B. Hypertensive 
arteriopathy

Location of  the lesions indicate the underlying pathology, as deep microbleeds are results of  hypertension or chronic vascular risk fac-
tors and deep microhemorrhages are caused by cerebral amyloid angiopathy [95].



Karadi ZN, Csecsei P, Lovig C, Lovadi EI, Szapary L (2016) The Clinical Relevance of  Cerebral Microbleeds. Int J Clin Ther Diagn. 4(4), 124-133.

127

 OPEN ACCESS                                                                                                                                                                                http://scidoc.org/IJCTD.php

Small Vessel Disease

Microbleeds, as the hemorrhagic margin of  a spectrum disease, 
are often found together with other pathologies, such as 
subcortical microinfarcts, lacunes, white matter hyperintensities 
and focal brain atrophy [41, 42]. They are all key features of  
small vessel disease, one of  the most common pathologies in 
the brain, a heterogenous systemic defect that affects various 
organs, commonly the small vessels in the brain [41]. Similarly to 
microbleeds, other parenchymal lesions are detectable by high-
resolution MRI methods, however small vessel disease itself  
cannot be visualized in vivo, allowing imaging results to function 
as radiological markers [42].

A consensus for classification named STandards for ReportIng 
Vascular changes on neuroimaging (STRIVE) was created to 
structure a clear system of  neuroimaging protocols and consistent 
terminology. The new, standardized classification and reporting 
method relies on individual and clinical judgement besides strict 
imaging criteria, providing a useful guideline to both research and 
routine clinical practice [41].

Not only the appearance but the origin of  these lesions is also 
heterogenous: main etiological categories include arteriolosclerosis 
(mainly associated with age, hypertension, diabetes mellitus), 
cerebral amyloid angiopathy, genetic factors (CADASIL, and other 
inherited diseases), inflammatory or immunological disorders, 
venous collagenosis and further secondary causes [42].

Major factors in the pathomechanism are vessel wall damage, 
change of  cerebral blood flow and therefore chronic ischemia, 
disturbance of  the blood-brain barrier, inflammation and 
apoptosis of  oligodendrocytes [42]. Newer studies show 
importance of  capillary disfunction as a shared marker of  small 
vessel disease with special focus on pericytes, as key elements [43].

Cerebral amyloid angiopathy (CAA) is a condition of  amyloidosis 
or amyloid deposition of  the cerebrovascular system [44, 45]. 
Although several types of  accumulating proteins have been 
described, amyloid β-protein is by far the most common type with 
major clinical relevance. CAA is associated with aging - appearing 
in half  of  the elderly population, it also plays an important role in 
Alzheimer’s disease where amyloid β-protein depostition is found 
in more than 80% of  the patients [46]. Its effect on intracerebral 
hemorrhage is still the focus of  intensive research. CAA-associated 
cerebral vasculopathies contribute to microbleeds and intracranial 
hemorrhage in lobar, especially occipital location; indicating that 
microhemorrhages preferably occur where β-amyloid deposition 
is utmost [48]. In a study, cerebral microhemorrhages were present 
in almost half  of  the cases of  confirmed CAA [49]. The inclusion 
of  microbleeds into the Boston criteria [50], the validated clinical 
diagnostic approach of  CAA in intracerebal hemorrhage appear 
to increase sensitivity of  detecting CAA [8, 34, 40]. Nevertheless, 
recent data, based on 113 cases, has queried if  this finding reflects 
the background of  all microbleeds and presented results that 
show no significant correlation in distribution and the affected 
sites between CAA and lobar microbleeds, implying that no direct 
neuropathological association is present between the two entities 
[51].

Cerebral Microbleeds and Clinical Relevance

Although cerebral microbleeds have been described as 
asymptomatic lesions, emerging data points out that these lesions 
are able to generate clinical syndromes if  appearing rapidly or 
manifesting at important sites [52]. Apart from their presence 
in healthy individuals [5, 19, 23], cerebral microbleeds are also 
related to ischemic and hemorrhagic strokes [2, 53], cognitive 
impairment and Alzheimer’s disease [54] along with diffuse axonal 
injury associated with traumatic brain injury [55].

Cerebral Microbleeds and Stroke

Microhemorrhages reflect a bleeding prone state, therefore it is not 
unforeseen that they are found in 19-83% of  cases of  intracerebral 
hemorrhages [9]. Also, the number and location of  the lesions 
are proportional to the risk and volume of  hemorrhages [8, 56]. 
While a single microbleed merely means 14% risk of  developing 
further symptomatic hemorrhages in three years, more than 
six microlesions increase the likelihood to 50%, serving as an 
indicator for the risk of  recurrence [40, 57] However, these facts 
do not suggest that micro - and macrohemorrhages are related; 
on the contrary, despite sharing features to some extent, they are 
entirely different entities [13].

Charidimou reported increased risk of  intracerebral hemorrhage 
but not ischemic events when microbleeds were present [58], 
although several studies proved that they are not solely associated 
with conditions susceptible to bleeding, and they are also 
present in 15-35% of  the ischemic strokes [9]. Findings remain 
controversial as a European investigation discovered no increased 
risk of  hemorrhage risk but probability of  future ischemic lesions, 
while a Japanese study stated strong relation to intracerebral 
bleedings rather than ischemic events [58]. Incident microbleeds 
point to the progression of  ischemic vascular lesions, particularly 
if  multiple lesions are present [59]. Moreover, they appear even in 
patients with transient ischemic attack (TIA) where they tend to 
emerge less [53], but they are linked to a higher risk of  progression 
into stroke [60]. There is also a four-fold increased likelihood of  
detecting microhemorrhages in cases of  recurrent stroke events.
[9] Lim et al., reported that in TIA, recurrent strokes occured in 
only 4.2% in patients without microhemorrhages, and they were 
considerably associated with strictly lobar and mixed microbleeds, 
at rates 14.3% and 38.5%, respectively [61]. It has also been 
revealed that the lesions at mixed locations relate to increased risk 
of  developing stroke after TIA in a manner independent of  the 
number of  the lesions [61].

The progression of  the underlying pathologies are undeniably 
reflected by the number of  microbleeds: 13% increase was 
recorded in the first four days and 23% in the next five years 
after a stroke event [62]. Another study measured the rate of  the 
formation of  new microbleeds in the three following years after 
TIA or ischemic stroke and found an extra 0.8 microlesions per 
year on average. Furthermore, the number of  microbleeds were 
increased by 5.4 lesions per year in patients with more than five 
microbleeds at baseline [63].

The coexistence of  ischaemic and hemorrhagic events in the 
presence of  microbleeds implies that these microlesions function 
as markers of  both first ever intracerebral hemorrhages and 
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ischemic strokes in healthy individuals [63, 64], as well as suggesting 
increased risk of  recurrent hemorrhage after intracerebral 
hemorrhage [57] and among survivors of  ischemic stroke [65]. 
Cerebral microbleeds are associated with higher risk to developing 
a future episode of  stroke in general, representing both ischemic 
and hemorrhagic consequences; with a dose-dependent manner 
based on the number of  microhemorrhagical lesions [57, 59, 66]. 
Cerebral microbleeds at regions generally affected by CAA imply 
an increased risk of  intracerebral hemorrhage, while sites without 
CAA may reflect both ischemic and hemorrhagical alterations as 
the underlying stroke pathology [64].

Based on several previously mentioned studies, it has become 
undoubtful that presence and even number of  microbleeds at 
baseline, along with radiological signs of  previous cerebrovascular 
events mark a notable relation to the shaping of  new microbleeeds 
that contribute to recurrent strokes [67]. Therefore, cerebral 
microbleeds emerge as potential biomarkers for the increased risk 
of  any types of  cerebrovascular events [66], preparing the way for 
a possibly revolutionary method of  diagnostics in clinical practice.

Cerebral Microbleeds and Thrombolysis

Thrombolytic therapy is proved to improve the three-month 
functional outcome if  administered in a short time-window in acute 
stroke [68]. Despite its undeniable merit, secondary post-ischemic 
symptomatic intracranial bleeding generated dilemma in decision-
making in the acute phase of  ischemic stroke [69-72], leading to 
very strict inclusion criteria and a list of  contraindications; even so 
these guidelines only contain standard radiological
 
information without microbleeds [73]. Thrombolysis-associated 
hemorrhagic transformation was found in a one-week time period 
in 6.8% of  patients receiving intravenous recombinant tissue 
plasminogen activator (rTPA) [72, 73].

Despite numerous attempts, there are no valid predictive scores 
able to filter patients more likely to develop secondary hemorrhagic 
transformation [72]. The risk of  secondary hemorrhage might be 
related to age, blood pressure, early changes in diffusion imaging 
and ischemic signs on CT and severity of  stroke [74], however 
cerebral microbleeds might serve as more reliable markers for 
risk associated with thrombolysis in stroke patients [69, 72] since 
their number increases rapidly after administration of  rTPA 
[75]. However, it still remains unknown if  microhemorrhages 
contribute to secondary bleedings after intravenous thrombolysis 
[76].

Numerous studies showed no significant relation even between 
multiple microbleeds and intravenous thrombolysis-related 
complications [69, 71, 76-79]. Until further data is available 
on their relation, the presence of  cerebral microbleeds are not 
contraindication for the use of  rTPA, therefore they are not 
included in thrombolysis guidelines.[71-72]

Cerebral Microbleeds and Antithrombotic Therapy

Analogously to the previously discussed rTPA treatment, bleeding, 
especially intracranial hemorrhage is a rare, but the most feared 
complication of  antithrombotic therapy [19, 80, 81]. These drugs 
have become the center of  attention in acute clinical settings, 

since decision-making is extremely burdensome when cost-
benefit balance is taken into consideration; emerging the need 
for risk stratification for potentially life-threatening intracerebral 
hemorrhages [82]. Besides pointing to the development of  
hemorrhagic strokes, cerebral microbleeds are also markers of  
antiplatelet and anticoagulant-related intracerebral bleedings [19, 
42, 81, 83-85].

Antiplatelets are increasingly used medications in prevention and 
treatment of  cardiovascular, cardiometabolic and cerebrovascular 
diseases. Presence of  baseline microhemorrhages had a significant 
correlation with symptomatic brain hemorrhages in antiplatelet 
users, the relation was even more conspicuous when multiple 
lesions were present [81, 84, 86, 87]. New formation of  cerebral 
microhemorrhages was indicated by baseline number of  lesions [5], 
classic vascular risk factors including age, blood pressure, gender, 
diabetes mellitus and lipid status [21, 88] and microangiopathy 
[5, 88]. Lovelock et al reported relation between microbleeds and 
antiplatelet therapy in patients with intracerebral bleeding but not 
with TIA or ischemic stroke [83], however other studies revealed 
the same correlation regarding ischemic cerebrovascular lesions 
[58, 82]. The Rotterdam Study revealed that aspirin might be only 
associated with strictly lobar lesions, emphasizing the importance 
of  the underlying small vessel disease [81]. Other studies 
investigating effects of  clopidogrel demostrated that clopidogrel 
use was associated with presence and even higher number of  
microbleeds in a stroke-free population [89], however, only a non-
significant correlation was found in patients with strokev [90]. 
Moreover, in contrast to aspirin, clopidogrel was more related to 
deep and infratentorial lesions than lobar ones [90, 91].

Some investigations suggested that the increased risk of  
intracerebral hemorrhage might outweigh the benefit of  
antiplatelets as methods of  secondary prevention [85, 88]. 
Nevertheless, the lack of  significant association between 
microbleeds and antiplatelets in stroke-free population [82] 
questions the need for overriding current guidelines.

Vernooij et al. found in the Rotterdam study that microbleeds 
were only related to antiplatelet drugs but not to anticoagulants 
[81], that would be explained by a hypothesis suggesting that 
platelet aggregation is a more important factor in microbleed 
evolution than clot formation [81]. Other studies seems to be 
in contrast to this findings as they reported higher percent of  
patients developing new microbleeds when baseline lesions were 
present than in microbleed-negative cases [92]. Microhemorrhages 
have also been proved to increase in stroke patients with prior 
anticoagulant therapy [93]. Akoudad et al., located most of  the 
microbleeds in the deep and infratentorial area in stroke-free 
patients on coumarin treatment [94], while other studies reported 
association with lobar lesions [95]. It has been verified that 
presence of  microhemorrhages and prothrombin time, particularly 
high variability in international normalized ratio (INR) values are 
independent contributors to intracerebral hemorrhage in patients 
treated with warfarin [94, 96]. An impaired hemostatic system 
with inability to remain self-limited therefore causing microbleeds 
to expand, could be a general explanation for higher prevalence 
of  both microbleeds and intracerebral hemorrhages [95, 97].

Novel oral anticoagulants (NOAC) have proved to lower risk 
of  intracerebral bleeding by almost 50% [98-101]. Saito et al., 
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found no new microbleeds in the NOAC group in contrast 
with the warfarin group, where the conventional anticoagulation 
was independently associated with the appearance of  new 
lesions [102]. These results might be attributable to a more 
stable hemostatic state with NOAC, since studies focusing on 
conventional anticoagulation showed that warfarin treatment 
with well-balanced and optimal INR range have similar risk of  
hemorrhage to NOAC therapy [95].

Similarly to questions regarding antiplatelet-safety, the costs versus 
the benefits of  anticoagulants are even more intensely argued, since 
they are key elements for treatment of  cardiovascular diseases, 
especially for the primary and secondary stroke prevention in 
non-valvular atrial fibrillation, as they manage to lower risk by 
almost 70% [103]. Several study results raise awareness to the 
use of  anticoagulants in patients with microbleeds, and therefore 
researchers argue whether oral anticoagulants still have the net 
benefit when the the risk of  potentially disabling hemorrhage is 

so high [57] that statistically, prevention of  a small number of  
cardioembolic strokes costs even higher number of  hemorrhages 
in patients treated with warfarin [104]. Despite these findings, 
Haley et al., presented that based on a decision model, only as 
high as a 13-fold increased risk of  intracerebral hemorrhage 
would balance benefits of  conventional anticoagulant use [105]. 
Several suggestions have been published for a potential screening 
algorithm for high-risk patients (Figure 4), however in the absence 
of  randomized trials, these proposals remained in the background.
[95, 106].

Cerebral Microbleeds and Cognitive Impairment

The relation between microbleeds and cognitive performance 
have been intensively researched [42]. Despite the fact that 
these lesions were believed to be silent, clinical and population-
based studies have reported symptomatic manifestations of  
neurovascular damage [42, 107]. Small vessel disease is one the 

Figure 4. Decision Algorithm for the Anticoagulation of  High-Risk Patients.

MRI Screening for Anticoagulation

Atrial Fibrillation Patient ≥ 60 years?

MRI MRI not needed

Microbleeds Present ?

Anticoagulates as usual

Anticoagulates as usual

Cortial (Lobor) Microbleeds

≥5 Subcortical Microbleeds

1. Neurology Consultation

2. For anticoagulation, avoid warfarin in favor of  newer anticoagulants

Neurological changes during anticogulation ?

 Repeate MRI Continue Anticoagulation

Microbleed Progression ?

Discontinue Anticoagulation Continue Anticoagulation

Yes No

Yes No

or
< 5 Subcortical Microbleeds

No

NoYes

High morbidity and mortality of  the potential hemorrhagic complication of  the antithrombotic drugs emerge the need for careful clinical 
decision-making. Flow charts and risk assessments before treatment might offer a safer but not profitable alternative. [Fisher M (2013) 
MRI screening for chronic anticoagulation in atrial fibrillation. Front. Neurol. 4:137. doi: 10.3389/ fneur.2013.00137.]
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most common source and also the marker of  progression of  
vascular dementias, since underlying pathomechanisms might 
include CAA or hypertensive arteriopathy, especially that it has 
also been suggested that these lesions may be able to limit cerebral 
plasticity [42, 108].

Cerebral microbleeds are found in up to 19% in the cogntitively 
unaffected population, however they are detected in higher 
percents in mild cognitive impairment, Alzheimer’s disease and 
vascular dementia (20-43%, 18-32% and 65-85%, respectively) 
[9]. The presence of  microhemorrhages was associated with 
lower scores on the Mini Mental State Examination (MMSE) or 
other neuropsychological testing methods [109, 110]. The RUN-
DMC study however, revealed that microbleeds were linked to 
worse cognitive function without change in MMSE scores [111].

It was revealed in the Rotterdam Study that deep microbleeds are 
not significantly related to cognitive outcome, however they affect 
global cognition, psychomotor speed, gait and attention. Lobal 
lesions are associated with memory and executive functions besides 
global cognition [9]. The baseline number of  microhemorrhages 
were proportional to risk of  cognitive impairment: a single 
microbleed marked a 16% risk, while more than six lesions 
reflected a notable increase to 52% risk for cognitive dysfunction 
[57]. Presence of  cerebral microbleeds reflected an overall two-
fold risk for dementia [112]. Results from other studies do not 
support the relation between microhemorrhages and cognitive 
impairment [113].

Cerebral Microbleeds and Prognosis

Kim et al. investigated morbidity and prognosis among stroke 
patients with cerebral microhemorrhages. They documented a 
strong relation between poor functional outcome and microbleeds, 
especially the ones located in the infratentorial region [114]. 
They suggest that microbleeds and white matter hyperintensities 
indicate sites of  chronic dysfunction in perfusion and reactivity, 
contributing to more critical damage in the penumbra area, leading 
to limited recovery [114, 115]. Prognosis is also influenced by the 
location affected by the lesions, since focal damages in important 
sites might worsen functional outcome [114].

Not only the location but the number of  microhemorrhages 
are also related to prognosis, especially in bleeding-prone 
conditions: it was found in patients after thrombolysis that 
pre-existing microbleeds were associated with disease outcome 
[116], furthermore microbleed number was independently linked 
to increased score on the modified Rankin scale [117]. Besides 
direct effects of  these microlesions on cognition and neurologic 
dysfunction, effects of  secondary hemorrhages after thrombolysis 
or the administration of  antithrombotic drugs worsen functional 
outcome in stroke patients [117].

The PROSPER study focuses on the connection between 
microhemorrhages and mortality in patients with cerebrovascular 
disease, antithrombotic therapy or cardio- and cerebrovascular risk 
factors. It is demonstrated that microbleeds are the most linked 
to overall mortality among imaging markers. They have found 
that overall mortality is higher in the group with more than one 
microbleed compared to the group without microbleeds present 
[118], analogously to a memory clinic study where the same 

result was found in patients with more than three microbleeds 
[119]. Multiple microbleeds also beared a six-fold increase in 
stroke-related mortality, and when investigating strictly lobar, 
CAA-related lesions, a 7.2-fold risk for stroke-associated deaths 
was revealed without any connection to cardiovascular mortality. 
Similarly to microbleed-related morbidity, their affect on mortality 
is also contingent of  the number of  cerebral microbleeds [118].

Conclusion

Along with the technical development of  imaging methods, 
cerebral microbleeds are getting increasing attention both at 
scientific research and clinical practice. They have become 
particularly important for their increasing burden on health. 
Despite the intensive investigation, results remain highly 
controversial, thus relevant information for the treatment and 
clinical guidelines is missing. Our paper reveals highly inconsistent 
findings among recent studies of  cerebral microbleeds. However, 
it has been proposed that these differences might no longer exist 
if  all imaging and patient selection methods could be standardized. 
Methodological consistency is even more important considering 
that microbleeds are primarily radiological concepts, where slight 
differences in depicting could result in extreme divergence of  
results.

Emerging data on the relation between cerebral microbleeds 
and cognitive impairment is already in the spotlight as these 
lesions were previously believed to be related to no symptomatic 
complications. Ongoing trials, namely, the CROMIS-2 [120] or 
the CMB-NOW [121] might provide so far lacking data that 
expectantly contribute to further understanding of  cerebral 
microbleed pathology, pathomechanism and clinical impications.
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