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Abstract

Objective: The purpose of  this review article is to illustrate the current state of  development of  bone graft substitutes that 
could be used for bone defect regeneration, as well as to analyze their efficacy for clinical use.
Methods: An electronic search of  the PubMed, was performed for articles written in English. The focused question was 
“ideal graft substitute material to choose in clinical practice”?. The searches were limited to articles including: bone graft, bone 
defect scaffold, bone substitutes, and bone regeneration. An attempt was made to identify clinical studies. During the data 
collection, the data were extracted from the studies including scaffold material, properties and advantages of  bone substitutes, 
as well as clinical results if  the study has been provided clinically. 
Results: In spite of  several acceptable scaffold options available for bone regeneration, these options still need to bridge the 
gap between research and clinical practice. There is little information available about the cellular basis for bone regeneration 
in humans. Several problems limit the broad usage of  such options, including lack of  randomized controlled human studies, 
and dubious long term results.
Conclusion: The studies should be nurtured and monitored by a combination of  clinical experience. Future trends may focus 
on the effective combinations of  osteoinductive materials, osteoinductive growth factors and cell-based tissue regeneration 
tactics using composite carriers. There is no single ideal graft material to choose in clinical practice, therefore researches are 
ongoing in all relevant fields, to establish modern bone regeneration protocols that may lead to the innovation of  ideal graft 
substitutes.
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Introduction

Bone is the second most transplanted tissue in the body [1, 2], 
with approximately 3.5 million bone graft procedures performed 
each year [3]. There are many cases in which bone grafts are 
needed in large quantity such as for reconstruction of  large bone 
defects caused by trauma, tumors, infections, and congenital de-
fects, and also in cases where the regeneration is compromised 
(osteoporosis, necrosis and atrophic non-unions) [4, 5]. All these 
facts emphasis that, large bone defects are still a challenge for 
maxillofacial surgeons.

Generally four elements are needed of  bone grafts for bone re-
generation: Osteoconduction, osteoinduction, osteointegration, 
and osteogenesis [6, 7]. Osteoconduction is the ability to sup-
port bone growth on a surgical site, during which pores, channels, 
and blood-vessels are formed within bone. Osteoblasts from the 
margin of  the defect that is being grafted utilize the bone graft 

material as a framework upon which to spread and generate new 
bone. Osteoinduction involves the stimulation of  osteoprogeni-
tor cells to differentiate into osteoblasts that then begin new bone 
formation. The most widely studied type of  osteoinductive cell 
mediators are bone morphogenetic proteins (BMPs) [8]. A bone 
graft material that is osteoconductive and osteoinductive will not 
only serve as a scaffold for currently existing osteoblasts but will 
also trigger the formation of  new osteoblasts. Osteointegration 
is the direct contact of  living bone to graft material [9]. Finally 
osteogenesis is the formation of  new bone by osteoblasts within 
the graft material [5-7].

There are three main types of  bone grafts, autografts, allografts 
and bone graft substitutes [5]. The autograft is considered as the 
standard in bone grafts. The ilium is the most frequent donor 
site accounting for one-third of  all cases [10]. However, its use is 
limited by complications such as pain, additional operating time, 
infection, scarring, blood loss, and donor site morbidity [10, 11]. 
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Allograft from cadavers or living donors is the most commonly 
used alternative to autografts [12]. The main advantage of  allo-
grafts is increased availability in various shapes and sizes and the 
avoidance of  donor-site morbidity [6]. On the other hand they 
have no viable cells to offer osteogenic properties, which may 
result in incomplete integration with the host tissue [13]. They 
lack the osteogenic capacity of  autografts and carry the risk of  
infectious agents or immune rejection [14]. Both types of  the 
bone graft options come with inherent limitations; which has led 
to the need for the development of  new bone graft substitutes. 
Substitute materials are advantageous because of  their unlimited 
availability but unfortunately they lack both osteoinductive and 
osteogenic properties, so suffer from poor integration and even-
tual mechanical failure [5, 13]. Therefore, the next generation of  
bone graft substitutes must be developed. Using tissue engineer-
ing techniques, it is possible to design new scaffolds aiming to 
decrease the disadvantages of  traditional grafts and improve graft 
integration, osteogenicity, osteoconductivity, and osteoinductivity. 
The aim of  this review article is to illustrate the current state of  
development of  these substitutes that could be used as alterna-
tive for their application in bone defect regeneration, as well as to 
analyze their efficacy for clinical use.

Biological properties of  bone 

Proceeding from the need of  bone graft substitutes, the field of  
tissue engineering seeks to address this need using different as-
pects of  medicine, biology, and material science. However, before 
a suitable bone tissue replacement can be engineered, the biologi-
cal properties of  the bone must be better understood.

Bone tissue consists of  bone extracellular matrix and bone cells, 
extracellular matrix is comprised of  both organic and inorganic 
components [15]. The organic components are formed of  type-
I collagen fibrils, osteopontin and osteocalcin. Within the bone 
extracellular matrix, osteopontin is known to promote cell at-
tachment through covalent binding with fibronectin and type I 
collagen. Both osteopontin and osteocalcin have an alliance with 
calcium and may support the nucleation of  calcium phosphate 
during mineralization [16]. The inorganic components of  the 
matrix are calcium, carbonate, and phosphate ions, arranged in 
a crystalline-like structure. Matrix mineralization starts with nu-
cleation of  calcium phosphate crystals, and followed by crystal 
growth [17]. Non-collagenous proteins can be nucleation points 
for crystallization [18]. There are three types of  bone cells in bone 
tissue: osteoblasts, osteoclasts, and osteocytes. Osteoblasts are re-
sponsible for bone formation through the synthesis and secretion 
of  an organic extracellular matrix, and also synthesize a variety of  
growth factors including transforming growth factor-β (TGF-β) 
and bone morphogenic proteins (BMPs) that can aid in both the 
recruitment and differentiation of  stem cells [15]. When matrix is 
no longer actively being formed, the osteoblasts become embed-
ded within the extracellular matrix and become osteocytes. Osteo-
clasts are responsible for bone resorption [19]. Communication 
between the three types of  bone cells regulate the formation and 
resorption of  bone.

Bone grafts into the recipient site 

It is known that an ideal bone graft should have osteogenesis, 
osteoinductivity, osteoconductivity, and osseointegration char-

acteristics [1, 20, 21]. Therefore it is important to understand 
the mechanism of  action for each graft. Bone grafts are used to 
bridge a critical size bone defect, they become incorporated into 
the recipient site. Incorporation of  the bone graft involves two 
essential steps: (1) the union between the edges of  the graft with 
the edges of  native bone segments, (2) gradual resorption of  the 
graft, associated with its replacement by new bone [22-24]. The 
space occupied by that the graft should ultimately turn into viable 
bone and permanently accessible to the physiological remodeling 
mechanisms. This process is typically very slow, and cannot al-
ways be accomplished. There are many factors which regulate the 
incorporation process, these factors may be relevant to the type 
of  graft, it porosity, recipient site, and the graft - bone interface. 
Incorporation is better in autogenous grafts, because of  their po-
rous nature, which allow easy vascular and cellular invasion. The 
graft structure has a large surface area that is covered by osteo-
blasts, making it osteoconductive and osteogenic, also through the 
extensive vascular invasion, the bone matrix can be demineralized 
and its proteins exposed through the actions of  osteoclasts. Lack 
of  integration between the graft and adjacent bone segments, 
makes the process slow and rarely complete [22]. Finally, graft 
incorporation can be summed up into five main steps [2]: (1) he-
matoma formation, release of  bone inducing factors and cellular 
recruitment, (2) inflammation and development of  fibro-vascular 
tissue, connecting the graft to the adjacent bone, (3) vascular in-
vasion of  the graft, (4) focal resorption of  the graft by recruited 
osteoclasts, (5) new bone formation, union between the graft and 
the surrounding bone, and graft remodeling.

Bone graft substitutes

Selection of  bone graft substitutes should be based on its char-
acteristics and properties of  the biomaterials, which include me-
chanical, chemical, toxicological, and morphological properties. 
The overall success is based on tissue compatibility of  a biomate-
rial, as well as the nature, degree, frequency, and its constituents 
to the intended tissues into which it will be utilized. During the 
few last years, studies have been focused on the optimal scaffold 
design which changed the requirements and properties of  the 
biomaterials used. Since 2002, Hench has defined three different 
generations [25], starting with the earliest and following the order 
in which they occurred. First generation of  bone graft substitutes 
desired to match the biomaterial with the physical properties of  
the tissue to be replaced, while maintaining inertia with the imme-
diate small-scale environment of  the tissue. This generation con-
tains metals (stainless steel, titanium), alloys (alumina, zirconia), 
and polymers (silicone, polypropylene, polymethylmethacrylate). 
A common manifestation for this generation is the formulation 
of  fibrous tissue at the tissue graft interface that would finally 
enclose the graft then leading to loosening. The material cannot 
be phagocytosed since it is encapsulated by fibrous connective 
tissue, isolating it from the surrounding tissues [26]. In order to 
avoid the formation of  this fibrous layer and improve osseointe-
gration, tissue engineering has developed the second generation 
of  bone graft substitutes, by covering the biomaterial with hy-
droxyapatite, Beta-tricalcium phosphate, or bioactive glass. This 
generation used synthetic or natural polymers to stimulate a con-
trolled chemical slump, leading to passive products which can be 
resorbed [27]. Third generation of  bone graft substitutes have 
been developed, to get material nearer to the autograft, using pa-
tient material which induces, at molecular level, cellular response 
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by combination of  the bioactivity and biodegradability of  second 
generation devices. This generation has been founded on the no-
tion of  bone tissue engineering which lead to creation of  a device 
that support bone regeneration through the cooperation between 
bone osteoprogenitor cells and growth factors (natural compo-
nents) for stimulation of  cells into a scaffold made of  various 
natural or synthetic biomaterials [28].

Tissue engineering has established specific scaffold properties, 
which guarantee biocompatibility, porosity, Micro & Nano scale 
structure, rate of  degradation , and growth factor delivery [29]. 
Biocompatibility is linked to a scaffold material which does not 
formulate undesirable local or systemic responses [30]. Porosity is 
related to interconnectivity, this means that it improve osteogen-
esis. A highly porous scaffold expedites cell husbandry and mi-
gration, while smaller pores allow tissue ingrowth [14]. Although 
the mechanical strength of  the scaffold decreases with porosity, 
this estimation should be tied with the mechanical needs of  the 
bone tissue which have to be replaced. Also pores promote the 
diffusion from and to the scaffold and simplify vascularization 
[14]. Micro & Nano scale structure promote cell functions lead-
ing to improved osteoinduction and osseointegration [31]. The 
proportion of  degradation of  the scaffold must stay tuned to 
stock the structure until the new bone has adequate mechanical 
strength [32]. Lack of  this state, may lead to the scaffold frac-
ture after a mechanical loading, before the completion of  bone 
healing process. Delivery of  growth factors such as transforming 
growth factorβ (TGFβ), insulinlike growth factors (IGF), platelet 
derived growth factors (PDGF), and bone morphogenetic pro-
teins (BMP), increase the potential of  osteoprogenitor and osteo-
blast functions to enhance bone growth by encouraging MSCs to 
migrate into the scaffold, proliferate, differentiate, and begin ex-
tracellular matrix production [33]. There are many techniques to 
deliver these growth factors such as controlled release from bio-
degradable scaffolds, osmotic pumps, bolus injection, and surface 
adsorbed protein release. The confrontation of  these techniques 
is a short half-life which leads to loss of  their bioactivity, in addi-
tion to restrictive control of  administered dose.

Scaffolds and bone substitutes

A wide variety of  biomaterials are currently used as scaffolds, in 
modern clinical practice, including collagen, hydroxyapatite (HA), 
β-tricalcium phosphate (β-TCP), calcium-phosphate, and glass ce-
ramics [34, 35]. Bone substitutes can be defined as “a synthetic, 
inorganic or biologically organic combination biomaterial which 
can be inserted for the treatment of  a bone defect instead of  au-
togenous or allogenous bone” [36]. In the past, inoperative scaf-
folds have been used as space possessors during the restoration 
processes. Currently no one single scaffold can display osteoin-
ductive, osteogenic, promote vascularisation and has suitable me-
chanical properties. Subsequently, the challenge is to form a scaf-
fold with biologically active molecules, living cells, and promote 
the regeneration of  bones. Currently used scaffold biomaterials 
can be classified into different groups:

Polymers scaffolds

Polymer materials are divided into natural polymers and synthetic 
polymers. Natural polymers, have likable properties, and facilitate 
the addition of  chemicals, proteins, peptides, and cells to scaf-
folds texture. In addition, the porosity and mechanical strength 

can be controlled by inconstant polymer concentrations.

The most widely studied of  natural polymers are collagen/gela-
tin, chitosan, silk, alginate, hyaluronic acid, and peptides (Table 1). 
Collagen can be isolated from animal tissues [37], it is character-
ized by biodegradability, biocompatibility and bioreabsorbability, 
also it has low antigenicity and ability of  being crosslinked [38, 
39], but it is difficult to control the rate of  degradability [40]. Scaf-
fold properties can be modified by using various concentrations 
of  collagen [41]. Collagen is the main protein of  the extracellular 
matrix, provides support to connective tissues such as skin, bones 
, blood vessels, and ligaments [42, 43], so collagen sponges have 
been used for the treatment of  long bone fractures (Collagraft®) 
[44]. Yannas et al. has inspected, collagen scaffold in dermal re-
generation process [45]. Kohara and Tabata induced bone forma-
tion by using gelatin sponges with bone morphogenetic proteins, 
also concluded that the use of  gelatin scaffold mixed with multi-
ple osteoinductive agents could be active to induce bone forma-
tion [46].

The synthetic polymers contain polyesters, polyanhydride, poly-
orthoester and polycaprolactone. The most commonly used syn-
thetic polymers are the polyesters such as poly glycolic acid, poly 
lactic acid, and their copolymer of  poly lactic-co-glycolic acid (Ta-
ble 2). These polymers lack the desired bioactivity as documented 
by Holzwarth and Ma [47]. However they have the ability to be 
converted into specific material with chemical and mechanical 
properties needed for the required application [48-50]. Although 
synthetic polymer has shown clinical outcomes comparable to 
autograft, it was found to be connected with bad incorporation 
and biodegradation forms [51, 52]. Synthetic polymer imple-
ments poorly on radiographic estimation with elevated rates of  
graft breakdown, nonunion, displacement, and even as a spacer 
is debatable [53-55]. However since both the polymers (natural 
and synthetic) have certain advantages, a combination of  them 
can be used to produce composite scaffolds with safely better 
biological and mechanical properties. Yang combined polycaprol-
actone with chitosan to create bioactive nanofibers [56]. This new 
hybrid scaffold takes advantage of  the physical properties of  the 
synthetic polymer and the bioactivity of  the natural polymer while 
minimizing the disadvantages of  both. A collagen and poly lactic 
acid scaffold with parallel collagen fibres embedded within a PLA 
matrix has been fabricated by Dunn et al. They suggested that re-
sorbable polymeric composite scaffolds are potentially useful for 
reconstruction of  the anterior cruciate ligament of  the knee [57].

Ceramic scaffolds

Ceramics are crystalline texture of  inorganic, nonmetallic min-
eral salts. This group is classified to two subgroups: bioinert or 
bioactive, also bioactive ceramics are categorized as resorbable 
or nonresorbable (Table 3) [58, 59]. Hydroxyapatite (HA), Cal-
cium Phosphate (CP), Tricalcium Phosphates (TCP), and glass 
ionomer cesments, are all designated in this group [60]. The most 
commonly inspected are calcium phosphate ceramics, tricalcium 
phosphate and hydroxyapatite, because of  their chemicophysical 
uniformities to the bone mineralization phase [61], they form a 
perfect osteoconductive scaffold for bone regeneration. Suetsu-
na et al. analyzed the records of  36 patients, where HA scaffold 
(40–45% porosity) sunk slightly into the vertebral body, for one 
level herniated cervical discs, no graft related complications were 
observed [62]. On the other hand Kim et al., using a HA scaf-
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No Scaffold Materials Properties and advantages

Natural polymers Biocompatible, control of  porosity, and mechanical strength by changing concentrations [95-98].

1 Collagen/gelatin Biocompatible, stimulates proliferation and differentiation of  cells, and poor mechanical properties [99-101].

1.1
Collagen added with poly-ε-

caprolactone (PCL) and alkaline 
phosphatase 

Increase cell proliferation, and cause mechanotransduction [102-104].

1.2 Collagen added with CaO–P2 O5 –
SiO2 and phosphatidylserine (PS)

Higher PS ratios, increase permeability and decrease compressive strength. PS could enhance osteogenic potential 
but osteoinduction and osteoconduction has not been fully defined [105-107].

1.3 Gelatin added with 
Chitoolisaccharide mixing Support ectopic calcium deposition [108].

1.4 Gelatin added with magnesium 
calcium phosphate (MCP).

Increase proliferation and osteocalcin but it is not clear if  the magnesium released could have an important impact 
[109, 110].

1.5

Collagen-poly(lactic-co-glycolic 
acid (PLGA) hybrid added with 
bone morphogenetic protein-4 

(BMP4) 

Induce osteogenic differentiation of  osteoblasts[111, 112].

1.6 Collagen added with silica Increase osteogenic and angiogenic potential [113, 114].
2 Chitosan Biodegradable, biocompatible, antibacterial, and bio-adhesive properties [115].

2.1
Chitosan added with 

poly(butylene succinate) (CHPBS) 
and marrow stromal cells

Elevate rate of  bone formation [116].

2.2 Chitosan added with collagen and 
Beta-glycerol phosphate

Scaffolds were 3 times stiffer than pure chitosan. Also it is highly beneficial for the osteogenic capabilities of  the 
scaffold [117, 118].

2.3 Chitosan added with collagen and 
glyoxal 

Mechanical changes conferred to the hydrogel upon crosslinking are not beneficial to the induction of  bone 
formation [119].

2.4 Chitosan added with silk fibroin 
and HA Unclear whether the presence of  silk fibroin and HA help promote osteogenesis [120, 121].

2.5 Chitosan added with tricalcium 
phosphate and platelet rich plasma

Promising system where MSCs do not need to be conditioned in osteogenic medium in order to produce robust 
bone growth [122, 123].

2.6 Chitosan added with alginate Addition of  proteins tends to improve osteoactivity [124].

2.7 Chitosan added with IGF1 and 
BMP2 

Improve bone formation, but the effect was higher with IGF1. It is unclear if  the results are due to changes in the 
porosity or to the presence of  growth factors [125].

2.8 Chitosan added with HA and 
peptide Beneficial to the differentiation process, and should be explored in composites of  other materials [126].

3 Silk fibroin
Impressive mechanical properties, environmental stability, biocompatibility, controlled proteolytic biodegradability, 

and morphologic flexibility [127].

3.1 Silk added with CaP Enhance osteogenesis, as it did not have any effect on the scaffold’s mechanical properties [128].

3.2 Silk added with HA Enhance the osteoconductive activity and mechanical properties [129-131].

3.3 Silk added with 
hexafluoroisopropanol Critical component of  bone regeneration [132].

4 Alginate Improve the osteogenic outcomes [133].

4.1 Alginate added with fibrin Does not address whether the presence of  fibrin, has a role in enhancing osteogenesis [134].

4.2 Alginate added with calcium 
phosphate cement Subtle changes in porosity, can be adjusted to obtain more satisfactory results [135].

4.3 Alginate added with proteins and 
peptides

It is not clear if  the coordinated release of  proteins from the scaffold had any effect on the osteogenesis [136, 
137].

4.4 Alginate added with nanoscale 
calcium sulfate Enhance the angiogenesis, as it is a necessary for bone formation [138].

5 Hyaluronic Acid Hydrogels Hydrophilic, nonimmunogenic, and has been found in the cytoplasm of  osteoprogenitor cells [139].

5.1 Hyaluronic Acid Hydrogels added 
with simvastatin

Improve viscoelastic properties and the addition of  SIM improved osteogenesis in vitro, although the results were 
not as notable in vivo [140, 141].

 Table 1. Properties and advantages for natural polymers scaffolds.
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5.2 Hyaluronic Acid Hydrogels added 
with growth factors Osteoinductive and angiogenic factors can have a synergistic effect on bone mineralization [142-144].

5.3 Hyaluronic Acid Hydrogels added 
with growth factors and heparin

Non-Heprasil loaded hydrogels resulted in a more efficacious outcome in vivo, emphasizing the therapeutic 
importance of  an increased release of  BMP2 [145].

5.4 Hyaluronic Acid hydrogel added 
with an integrin ligand Enhances the osteogenic potential of  rhBMP2 [146]].

6 Peptide Hydrogels Biocompatible and biodegradable [147-152].

 Table 2. Properties and advantages for synthetic polymers scaffolds.

No Scaffold Materials Properties and advantages
Synthetic Polymers

1
Aliphatic polyesters such as 

(polyglycolic acid, polylactic acid, and 
polycaprolactone)

Their degradation products are present in the human body 
and can be removed by natural metabolic pathways [153, 

154].

1.1
PCL scaffolds incorporating HA 

particles
Increase in the amount of  new bone formation in the 

PCL/HA scaffolding implants as compared to neat PCL 
counterparts [155].

1.2
PCL added with poly(diisopropyl 

fumarate)
The changes in mechanical properties imparted by the 

addition of  PDIPF to PCL could have an effect on bone 
formation, but that effect is cell type dependent [156].

1.3
PCL added with poly(diisopropyl 

fumarate) and hydroxyapatite
The change in mechanical properties and presence of 
a mineral component can work together to enhance 

osteogenesis [157].

1.4
PCL added with calcium phosphate 

cement 
BMSCs were able to attach to the composite, proliferate, 

and undergo osteogenesis [158].

1.5
Poly (L-lactide-co-ε-caprolactone) 
added with Poly (L-lactide-co-1,5-

dioxepan-2-one)

Support osteogenic differentiation [159].

1.6
Dipeptide polyphosphazene-polyester 

blend
Good osteocompatibility [160, 161].

1.7
PCL coated with collagen and either 
chondroitin sulfate or a high sulfated 

hyaluronan.

Synergistic effect in osteogenic media and exposed to 
electrical stimulus [162].

2 Copolymers Controllable physicochemical properties [163].

2.1
Copolymer added with BMP2 related 

peptide (P24) or simvastatin
Scaffold with simvastatin was more effective at inducing 
bone formation than the bone scaffold alone [164, 165].

2.2

Copolymer added with PEG–
PCL–PEG , collagen and nano 

hydroxyapatite

Although the composite is better at regeneration than the 
self-healing process, they do not address how the individual 

components of  their copolymer contribute to this effect 
[166, 167].

2.3
Copolymer added with poly (ethylene 
oxide terephthalate)/poly (butylene 

terephthalate)

Controlling surface roughness of  a scaffold gives a level of 
control over MSC differentiation [168].

2.4
Copolymer added with poly (lactide-
co-ε-caprolactone) (PLCL) scaffolds, 

collagen and HA

Promising results, and it should be tested with other types of 
cells that have not been committed towards the osteogenic 

route, such as MSCs [169].

2.5

Copolymer added with electroactive 
poly (ester amide) containing 

conjugated segments of  amino-capped 
tetraaniline

Combining appropriate materials with physical stimulation 
such as electrical impulses can produce superior responses 

[170].
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 Table 3. Properties and advantages for ceramic scaffolds.

No Scaffold Materials Properties and advantages

Ceramic Excellent biocompatibility and bioactivity but 
presents particular problems with its mechanical 

properties in terms of  fracture and fatigue [59, 171, 
172]. 

1 Bioglass Control rate of  degradation, excellent 
osteoconductivity, bioactivity, and capacity to 

deliver cells, but they present limitations in certain 
mechanical properties such as low strength, 

toughness, and reliability [173].
2 Calcium Phosphate Osteoconductivity, bioactivity and resorbability in 

vivo due to their complex chemical composition 
(Ca/P ratio) and physical properties such as 

crystallographic structure and porosity [174].
2.1 Calcium Phosphate 

added with hydrogel 
microbeads and 

chitosan combined 
with BMP-2.

Increase in cell proliferation and a good level of 
histocompatibility [175-177].

3 Ceramic with 
combination of 

calcium aluminate 
added with 

melatonin and 
platelet rich plasma

Adhesion, viability, and proliferation of  osteoblasts 
[178].

4 Bioglass-calcium 
phosphate 
composite

Biocompatibility, biodegradability and osteogenic 
[179].

5 Corals Highly controlled pore sizes and promote the 
differentiation of  human MSCs into osteoblasts 

[180].

fold (30% porous), found that all implants carried out had fusion 
at 6–12 months, with good clinical results and no graft collapse 
[63]. In another study, HA but with plating was used, and com-
plete fusion occurred in 98-100% [64]. Dai and Jiang investigated 
clinical controlled trial of  βTCP, contained in interbody cages, for 
patients with cervical radiculopathy [65]. A total of  62 patients 
were randomized into an anterior plating or nonplating treatment 
group, and followed for 2 years. At 6 months, successful fusion 
was noted in all patients. The authors concluded interbody cage 
containing βTCP to be an appropriate treatment for cervical fu-
sion. However, the debate is still ongoing about their mechanical 
strength and resorbability.

Calcium sulphate can be used safely in benign metaphyseal bone 
defects, but it has a quicker resorption rate with more inconsistent 
results [66]. Biphasic calcium phosphates, which combine 40% 
TCP with 60% HA, may produce further physiological equation 
between mechanical support and bone regeneration. Yamada et 
al. accomplished a histological research of  βTCP, HA with vari-
ous ratios of  the two so as to recognize which was the most con-
ducive to osteoclastic activity [67]. This study suggests 60/40 ratio 
to give a more natural surface than either βTCP or HA alone. 
Biphasic macroporous ceramic scaffold appears effective in the 
treatment of  metaphyseal defects for bone cysts and benign bone 
tumors, also the addition of  osteoprogenitor cells from a bone 
marrow aspirate may hasten bone regeneration. Siegel et al. [68]

observed 51 patients with benign bone tumors treated with the 
combined scaffold of  βTCP and osteoprogenitor cells aspirated 
from bone marrow. At six months after operation, all implanted 
grafts showed radiological features comparable to the framing 
cancellous bone, as well the trabeculation and resorption rates 
were similar. In addition El-Adl et al. [69] reported on 34 pa-
tients with benign bone tumors treated with TCP/HA scaffold 
and bone marrow aspirate. This study demonstrated that the rate 
of  bone regeneration was directly related to the size of  defect. 
Several studies have estimated the wall cyst confusion by injection 
of  a ceramic. Mik et al. marked out 55 patients who were treat-
ed for bone cysts using calcium sulphate pellets [70]. This study 
showed that 80% of  patients had a complete or partial response 
after treatment. Furthermore Joeris et al. used percunateous tri-
calcium sulphate for bone regeneration and concluded that 96% 
of  patients were with good results [71].
 
Coral in the presence of  a phosphate donates calcium hydroxyapa-
tite (known as coralline HA) and removes all immunogenic pro-
tein [72]. Agrillo et al. using granulated coralline HA within a car-
bon fiber cage demonstrated complete fusion in all 45 patients at 
12 months with no complications [73].

Metallic and Composite scaffolds

Several metallic scaffolds are used to provide support for bone 
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defect regeneration, such as titanium [74], stainless steel [75], and 
aluminum [76], these metals are mechanically strong but are not 
biodegradable and release toxic metallic ions that lead to inflam-
matory cascades, allergic reactions, and tissue loss [77]. The es-
sential abuse of  metallic scaffolds is the deficiency of  biological 
realization on the material surface. To overcome this problem, tis-
sue engineering presents different ways to protect the mechanical 
properties and improve the biocompatibility of  the surface. For 
example, Hydroxyapatite has been used to provide the necessary 
bioactivity to the titanium mesh with a porous network to assist 
osteoconduction [78, 79], also in cases where there is existing gap, 
titanium scaffolds often has been complemented with delivery of  
TGF-Ɓ and BMP-2 [80, 81], as well as stem cells have been cul-
tured in vitro onto titanium scaffolds to induce the formation of  
calcified nodules and increase the production of  mineralized ex-
tracellular matrix onto the scaffold [82]. Different clinical studies 
have utilized porous Ti scaffolds for tissues reconstruction. Kut-
tenberger et al. have applied laser-perforated titanium micro-mesh 
into 20 patients with defects in the craniofacial region [83]. The 
results showed loss of  the mesh and excellent long-term stabil-
ity during 8 years follow-up. Also Bystedt et al. concluded that 
implantation of  porous titanium granules seem to function well 
as augmentation material in the sinus floor [84]. As well Jaquiéry 
et al. have used titanium meshes and autogenous bone graft into 
26 patients with small and midsize orbital defects. This study indi-
cated that titanium meshes provided stability and can support the 
orbital content [85]. Although there is a paucity of  literature re-
garding the clinical outcomes and result of  porous titanium scaf-
folds, longer follow-up periods and a larger sample of  patients is 
still required in order to obtain reliable clinical success rates.

Combining two or more materials such as ceramics and polymers 
[86-88], the structure and biochemical properties can be modified 
to achieve more favorable characteristics, like biodegradability 
[89, 90]. For example, hydroxyapatite/PLGA composites possess 
the osteoconductive properties of  hydroxyapatite and biodegra-
dability of  PLGA [91]. Polycaprolactone-tricalcium phosphate 
(PCL–TCP) scaffolds combined with recombinant human BMP7 

has been demonstrated to completely bridge a critical size of  tibial 
defect in a sheep model [92]. Also adult stem cells have been used 
to generate new tissue in combination with scaffold matrices [93]. 
Currently tissue engineering has developed smart delivery system 
which act in a sequential manner (one agent appears while another 
disappears) to achieve sequential delivery of  BMP-2 and BMP-7, 
where nanocapsules of  PLGA release one of  the growth factors 
and then co-entrapped in chitosan fiber or PCL 3-D plotted scaf-
folds [94]. Smart systems can be used for controlled drug delivery 
using a group of  polymers that physically or chemically respond 
to environmental stimuli such as light, temperature or pH. The 
mechanism of  delivery suggests that upon decrease of  tempera-
ture of  the target site, swelling of  nanospheres leads to release of  
their content, maximizing delivery at the target site. 

Results

In spite of  several acceptable scaffold options being available for 
bone regeneration, these options still need to bridge the gap be-
tween research and clinical practice. There is little information 
available about the cellular basis for bone regeneration in humans. 
Several problems limit the broad usage of  such options, including 
lack of  randomized controlled human studies, regulatory neces-
sity, dubious long term results, as well as technique specific limita-
tions.

Conclusion

The studies should be nurtured and monitored by a combina-
tion of  clinical experience, and knowledge of  basic biological 
principles. Future trends may focus on the effective combina-
tions of  osteoinductive materials, osteoinductive growth factors 
and cell-based tissue regeneration tactic using composite carriers. 
There is no single ideal graft material to choose in clinical practice, 
therefore research is ongoing within all relevant fields, to establish 
modern bone regeneration protocols that may lead to ideal graft 
substitutes.

Table 4. Properties and advantages for metallic and composite scaffolds.

No Scaffold Materials Properties and advantages

1 Metallic
Poor stimulation of  new bone growth due to the elastic moduli, which does 

not correspond with natural bone tissue [110, 181].

1.1 Ti-based metals
Elasticity, mechanical properties, shape memory effect, porous structure and 

biocompatibility [182, 183].
1.2 3D microporous NiTi with Ti Stimulate cell attachment and proliferation [183].
1.3 Ti with TiO2 osteoconductivity and osseointegration [184, 185].
1.4 Metallic added with silica glass layers Enables release of  proteins and drugs into body fluid [187].

1.5 W4-Mg and Fe-Mn alloys
Viability and proliferation under certain conditions, bone formation, and 

biocompatibility in vivo [187, 188].

2 Composite
Strong as bone and has the same modulus of  elasticity and capable of  drug 

or growth factor delivery.

2.1 Polymer/ceramic
Biocompatibility, sufficient mechanical strength, osteogenic differentiation, 

and bone growth [189-193].

2.2 Metal/ceramic 
Bioactivity, osteoconductivity, osteoinductivity, biocompatibility, and biodeg-

radability [194-196].
2.3 Polymer/metals Mechanical stability, biocompatibility, and partial biodegradability [197, 198].
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