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Introduction 

High blood pressure (hypertension) is one of  the most common 
chronic medical conditions in the developed world and is rapidly 
becoming a major problem in developing countries. It is estimat-
ed that about 20% of  the world's adult population, or some 690 
million adults, suffer from hypertension [1-3]. Blood pressure in 
the population is normally distributed in a bell-shaped curve with 
a slight skew towards higher readings (Figure 1). Thus, there is no 
upper limit of  ‘normal’ blood pressure beyond which cardiovas-
cular complications occur. Rather, blood pressure levels, both sys-
tolic and diastolic, have been shown to be positively and continu-
ously associated with the risk of  stroke, coronary heart disease 
and other forms of  target organ damage. However, in order to 
facilitate patient assessment and management, an arbitrary defini-
tion of  hypertension has been established [4, 5].

Both the Joint National Committee on Prevention, Detection, 

Evaluation and Treatment of  High Blood Pressure (JNC) in the 
United States of  America and the World Health Organization–
International Society of  Hypertension (WHO-ISH) now define 
hypertension in adults as a systolic blood pressure (SBP) of  140 
mm Hg or more or a diastolic blood pressure (DBP) of  90 mm 
Hg or more on at least two subsequent occasions. Isolated systolic 
hypertension is defined as a SBP 140 mm Hg and a DBP 90 mm 
Hg. The great majority, at least 95% of  cases of  hypertension, can 
be classified as primary or essential hypertension because no sec-
ondary causes such as neurovascular disease, renal failure, phaeo-
chromocytoma or hyper-aldosteronism are present [6-9].

Regulation of  Arterial Blood Pressure

Although the cardiovascular system is capable of  maintaining 
blood flow and cardiac function in the absence of  any nervous 
system input, addition of  neural control mechanisms allows very 
precise, short-term (second-to-second and minute-to-minute) 
cardiovascular regulation. Studies over the last 30 years demon-
strate that the nervous system can also contribute to long-term 
cardiovascular and blood pressure (BP) regulation. In several 
animal models and in subsets of  human hypertensive patients, 
chronic activation of  the nervous system appears to contribute 
to persistent hypertension and the resulting target organ damage 
[10-13].

The final common pathway for the contribution of  the nervous 
system to chronic arterial pressure control involves the sympa-
thetic and parasympathetic divisions of  the autonomic nervous 
and the associated neurohormonal systems primarily regulated 
by the hypothalamus. Most experimental evidence suggests the 
parasympathetic nervous system is much less involved in BP regu-
lation and hypertension than the sympathetic nervous and neu-
rohormonal systems [14-17]. The autonomous nervous system 
contributes to the development and maintenance of  hypertension 
through stimulation of  cardiac output in heart, fluid retention in 
kidney and increased vascular resistance in peripheral vasculature. 
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Both the sympathetic and the parasympathetic nervous systems 
are known to innervate blood vessel walls and consequently regu-
late contraction and wall tension. Elevated sympathetic activity 
induces an increase in blood pressure, by causing peripheral vaso-
constriction, reducing venous capacitance, and affecting renal so-
dium and water excretion. For example, in response to increased 
sodium intake, sodium-sensitive receptors, present in the circum-
ventricular organs and hypothalamic paraventricular nucleus, in-
hibit renal sympathetic nerve activity to facilitate natriuresis, thus 
maintaining fluid and electrolyte homeostasis and normotension.

Peripheral Autonomic Nervous System

Efferent Nerves: The autonomic nervous system includes sym-
pathetic and parasympathetic divisions and the associated afferent 
(sensory) feedback nerves that affect each division. Sympathetic 
and parasympathetic motor neuron cell bodies are found in pe-
ripheral ganglia [18-21].

In the sympathetic nervous system (SNS), cell bodies of  neurons 
lie in ganglia that are immediately lateral to the spinal cord (para-
vertebral) or anterior to the vertebral column (prevertebral). The 
prevertebral neurons primarily innervate visceral organs, includ-
ing the heart and kidney, whereas the paravertebral neurons pro-
ject more prominently to blood vessels throughout the body. Irre-
spective of  their location, all sympathetic ganglia neurons synapse 
with pre-ganglionic neurons that lie in the thoracic portion of  the 
spinal cord [22-24].

Parasympathetic motor neuronal cell bodies are located in ganglia 
that are very close to the organ that is innervated. These ganglion 
cells are innervated by neuronal cell bodies that are in the medulla 
(for organs above the transverse colon) or the sacral spinal cord 
(for organs below the transverse colon)  [18, 19, 25].

Afferent Nerves: Sensory afferent feedback from the innervated 
tissue is projected back through the ganglia to the central nerv-
ous system (CNS). Most sympathetic afferents terminate in the 
spinal cord at the level that correlates with the position of  the pre-
ganglionic cell bodies (e.g., the lower thoracic spinal cord is the 
usual location of  renal sympathetic pre-ganglionic neurons and 
provides most of  the renal alpha sympathetic sensory feedback 

to the CNS). Parasympathetic sensory innervations follows the 
projection pattern of  the motor fibers, and most of  it terminates 
in the dorsal brain stem [18, 21, 26-28].

Cardiovascular Monitoring Systems

Arterial baro-receptors are stretch-sensitive sensory nerve end-
ings located in the carotid sinuses and aortic arch that function 
as arterial pressure sensors (Figure 2). Afferent (sensory) barore-
ceptor activity is transmitted to the nucleus tractus solitarii in the 
medulla oblongata, where the signals are integrated and relayed 
through a network of  central neurons that determine efferent au-
tonomic outflow [14, 16, 22, 29, 30].

Baroreceptors: The brain continuously monitors arterial pres-
sure through stretch receptors (mechanoreceptors) attached to 
vagal and glossopharyngeal axons innervating the aortic arch and 
carotid bifurcation (aorto-carotid or high-pressure barorecep-
tors). In parallel, blood volume is monitored by branches of  the 
vagus nerve innervating the cardiac atria and ventricles (cardio-
pulmonary or low-pressure baroreceptors). Baroreceptors located 
elsewhere in the body (e.g., the kidney) serve a similar function. 
Although baroreflex abnormalities do not appear to lead directly 
to hypertension, the loss of  these reflexes greatly increases BP 
lability and thereby accelerates end-organ damage [18, 19, 26, 30].

Chemoreceptors: Chemoreceptor’s sensitive to vascular O2 defi-
ciency, CO2 excess, and H+ excess are found in the carotid bodies 
and adjacent to the aorta. These receptors are not as important 
to arterial pressure regulation as are the mechanoreceptors under 
usual conditions but appear to play a role in arterial pressure regu-
lation during extreme conditions such as hypoxia [21, 28, 30, 31].

Osmoreceptors: Osmoreceptors found in several areas of  the 
brain and in the periphery can also modify arterial pressure; recent 
studies have highlighted the importance of  hepatic osmorecep-
tors in cardiovascular regulation [15, 17, 26, 32].

Local Modulation of  Neurotransmission

Less conventional forms of  synaptic transmission may be impor-
tant to the role of  the SNS in arterial pressure regulation. It has 
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tection and Follow-Up Program.
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been demonstrated that neurotransmitters released from efferent 
(motor) nerve terminals in the kidney can alter the ability of  af-
ferent (sensory) axons to send information to the CNS [19, 21]. In 
addition, some studies have shown that peripheral afferent nerves 
directly innervate neurons in the sympathetic ganglia and give rise 
to sensory feedback control that does not go through the CNS 
[25, 32, 33].

Neurohormones

Other neurotransmitters and neuromodulators released by sen-
sory neurons have profound effects on the target organs. Per-
haps the best example is calcitonin gene related peptide (CGRP). 
Release of  CGRP from peripheral afferent neurons onto the 
blood vessels, is a potent cause of  vasodilation. Recent studies 
in the rat suggest that the release of  CGRP is inhibited by α2-
adrenoreceptor activation. Therefore, the overabundance of  nor-
epinephrine in a target tissue could engender vasoconstriction not 
only directly by stimulation of  α1-adrenoceptors, but also indi-
rectly through inhibition of  CGRP release [14, 16, 17, 34].

Renal Sympathetic Nerves and Extracellular Fluid Volume 
Regulation

Renal Sympathetic Innervations: The kidney is innervated only 
by the sympathetic nervous system with postganglionic fibers 
arising from spinal segments, with great variability among individ-
uals. Sympathetic nerves are characterized by strings of  varicosi-
ties along their axons that contain the neurotransmitter, norepi-
nephrine. Renal sympathetic nerve fibers track mainly through the 
cortex of  the kidney, passing in close proximity to renal resistance 
vessels (afferent and efferent arterioles), and nephrons, especially 
proximal convoluted tubules and thick ascending limbs of  the 
loops of  Henley [32].

Functions of  Renal Sympathetic Nerves: Low-level activation 
of  the renal nerves has little influence on renal hemodynamics, 
acting instead to increase renin secretion and tubular sodium and 
water reabsorption. High rates of  renal nerve activity cause short-
term reductions in both renal blood flow and glomerular filtra-

tion but have little influence on fluid balance. In contrast, a small 
rise in renal nerve activity for extended periods can have a major 
impact on extracellular fluid volume (ECFV). The actions of  the 
renal sympathetic nerves on these various functions are summa-
rized in Figure 3 [27, 28, 31].

Tubular Sodium Reabsorption: Tubular epithelial cells are 
stimulated by norepinephrine released at neuro-effector junctions, 
with an ensuing activation of  alpha-adrenoceptors on basolateral 
membranes. This causes an increase in sodium (Na+) hydrogen 
(H+) exchanger activity at the apical membrane, allowing sodium 
to enter the cell, whereupon it is pumped out of  the cell through 
Na+/K+ adenosine triphosphatase (ATPase) located in basolateral 
membranes. Water of  hydration follows Na+ ions through (trans-
cellular route) and between (paracellular route) these high perme-
ability epithelial cells [20, 21].

Renin-Angiotensin-Aldosterone System Stimulation:  Neu-
ral-mediated release of  renin occurs when norepinephrine stimu-
lates α1-adrenoceptors on the juxta glomerular (granular) cells of  
the afferent arterioles located at the entrance to the glomerulus. 
The subsequent generation of  angiotensin II (Ang II) has both 
intra- and extra-renal actions that affect renal Na+ and fluid han-
dling as mediated by AT1 receptor stimulation. Within the kidney, 
Ang II constricts afferent and efferent arterioles; constriction of  
the efferent arterioles is especially important in maintaining glo-
merular filtration pressure in low flow and/or hypotensive states. 
Ang II also acts rapidly and directly on proximal epithelial cells to 
increase fluid reabsorption. Aldosterone release prompted by Ang 
II, in addition, results in distal nephron and collecting duct Na+ 
reabsorption. Together, these neural effects regulate fluid volume 
homeostasis in such a way that both rapid and/or chronic adap-
tive responses are possible [14-16].

Sensory information from many body systems is integrated in the 
hypothalamus and brainstem guiding autonomic regulation of  
sympathetic and parasympathetic nerves (Figure 4).

Afferent fibers stimulated by mechanoreceptors and chemorecep-
tor’s in the somatic (muscle and skin) and visceral (gut, liver, and 
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Figure 2. Cardiopulmonary and arterial baroreflex neural pathways involved in cardiovascular homeostasis and blood pres-
sure (BP) regulation. Locations of  arterial baroreceptors are indicated by filled circles.
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kidneys) systems provide input to the CNS and generally stimu-
late efferent sympathetic nerves. Higher cortical neurons also pro-
vide input to cardiovascular control centers by way of  psychologi-
cal stressors and environmental conditions. The most important 
regulators of  efferent renal sympathetic nerve activity are the high 
pressure (aortocarotid) and low-pressure (cardiopulmonary) ba-
roreceptors [35-37].

Pathophysiology of  Hypertension

Hypertension is a haemodynamic disorder in which increased ar-
terial pressure may be associated with an increased cardiac output 
or increased total peripheral resistance. In most patients it is an 
increased total peripheral resistance that produces the increased 
arterial pressure. A large number of  pathophysiological factors 
have been implicated in the genesis of  hypertension, including: 
(1) increased sympathetic nervous system activity, possibly related 
to increased responsiveness to psychosocial stress; (2) overpro-
duction of  sodium-retaining hormones and vasoconstrictors such 
as endothelin or thromboxane; (3) increased sodium intake; (4) 
inappropriate secretion of  renin; and (5) decreased production 
of  vasodilating substances such as nitric oxide or prostaglandins 
[2, 5, 38, 40].

Most cases of  hypertension result from the interplay of  genetic 
and environmental factors, with 25–40% of  blood pressure varia-
tion being genetically determined. High blood pressure is a com-
plex trait that does not follow classical Mendelian rules of  inher-
itance attributable to a single gene locus, except for several rare 
forms of  monogenic hypertension. Rather, it is a polygenic and 
multifactorial disorder in which the interaction of  several genes 
and environmental factors such as alcohol intake, physical exer-
cise, diet (calories, micronutrients) and stress is important [37, 41, 
43].

Hypertension in isolation leads to initial and medial thickening 
of  blood vessels, a condition that has been referred to as nodular 
arteriosclerosis. These lesions may result in fibrous plaque and 
thrombus formation, which is probably responsible for ischemia 
and infarction of  the brain and kidneys in patients with severe 
chronic hypertension. More commonly, hypertension coexists 
with hyperlipidemia, and the combination of  risk factors leads 
to the formation of  lipid-rich atherosclerotic plaques, eventually 

resulting in coronary and cerebrovascular events  [9, 44].
Aging, Hypertension, and Arterial Function

Blood pressure and arterial stiffness: Elevated BP can increase 
arterial stiffness (and elastic modulus) by functional and struc-
tural mechanisms. With an increase in luminal pressure, the load-
bearing elastic lamellae stretch and become stiffer and the loosely 
woven collagen web is progressively engaged. Since collagen is 
several orders of  magnitude stiffer than elastin, transfer of  load 
from elastin to collagen is associated with a marked nonlinear in-
crease in functional stiffness (and elastic modulus) of  the arterial 
wall. Contraction of  vascular smooth muscle also tends to favor 
increased stiffness[11, 12, 45].

Wall Composition:  Central arterial elasticity is critically depend-
ent on normal content and function of  the matrix protein elastin, 
whose half-life of  40 years is one of  the longest in the body. De-
spite this stability, fatigue of  elastin fibers and lamellae from the 
accumulated cyclic stress of  more than 2 billion aortic expansions 
often has occurred by the sixth decade of  life. Eventual fracturing 
and disarray of  elastin is accompanied by structural changes of  
the extracellular matrix that include proliferation of  collagen and 
deposition of  calcium. Humoral factors, cytokines, and oxidative 
metabolites may also play a pathogenic role. This pathological 
process, classically termed as arteriosclerosis, results in increased 
stiffness of  the aortic wall at any ambient pressure [29, 46, 47].

Disorders of  Extracellular Fluid Volume Regulation

Several pathophysiological states are associated with disordered 
ECFV regulation and raised systemic and renal sympathetic out-
flow, including hypertension, heart failure, and cirrhosis. In hyper-
tension, the increased sympathetic drive may originate from the 
central nervous system itself, either through higher cortical input 
pathways and/or from other sources of  dysregulated sensory in-
put [8, 21]. Heart failure is a state of  systemic underperfusion, 
where decreasing cardiac output progressively fails to meet the 
metabolic needs of  the body [34, 35]. A major systemic response 
to this hypoperfusion state is reflex sympatho-excitation, presum-
ably intended to drive the heart and restore output. In cirrhosis, 
raised venous pressure and reduction in functioning liver mass 
activates hepatic receptors and in so doing engenders reflex sym-
patho-excitation [38].
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NE α1- Adrenoceptros	

NE α1- Adrenoceptros	
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Figure 3. The innervations of  the afferent and efferent resistance arterioles, renin-containing (juxta glomerular) cells, epi-
thelial cells of  the kidney, and the norepinephrine (NE) stimulated adrenoceptors involved.
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An important renal consequence in all these states is neurally-
dependent Na+ retention leading to an increased ECFV [13]. In 
hypertension, this contributes to the persistence of  the hyperten-
sive state. In heart failure, any rise in ECFV generally increases 
preload, which both compromises the function of  the failing 
heart and contributes to congestive symptomatology. As cirrhosis 
evolves and volume expansion occurs there is also a concomitant 
decrease in plasma proteins and osmotic pressure, factors which 
together exacerbate the edema state [25].

There are two primary therapeutic strategies in these pathophysi-
ological conditions: (1) reducing sympathetic drive to the kidney 
and hence any neurally-induced Na+ retention and (2) use of  diu-
retics and vasoactive drugs that affect renal tubular re-absorptive 
processes in such a manner that excess Na+ and water is mobi-
lized.

Obesity-Related Hypertension

Epidemiologic studies have shown that the prevalence of  obe-
sity in children, adolescents, and adults is increasing worldwide. In 
the Framingham Heart Study, excess weight was associated with 
hypertension in 78% of  men and 65% of  women. Other investi-
gators have found that central (truncal or visceral) obesity, rather 
than peripheral adiposity, is closely associated with hypertension. 
The cause of  hypertension in obesity is complex and multifac-
torial, including hemodynamic, metabolic, and endocrine mecha-
nisms [13].
 
Mechanisms Of  Obesity-Related Hypertension: Central 
obesity is the most common condition associated with insulin 
resistance and the consequent hyperinsulinemia. The resistance 
to insulin, however, is selective and not uniform in all tissues. In 
animal experiments insulin increases absorption of  sodium in the 
diluting segment of  the distal nephron, with a manifest effect of  
salt and water retention; it also increases adrenergic activity and 
causes vascular smooth-muscle hypertrophy. Insulin resistance 
and hyperinsulinemia may also impair the insulin-mediated vas-
cular signaling pathways associated with vasorelaxation, mecha-
nisms that may link hyperinsulinemia and insulin resistance to the 
development of  hypertension [23, 25].

Most of  the insulin-resistance hypertension connection has been 
demonstrated in animal experiments. Acute and chronic studies 
that induce hyperinsulinemia in humans have failed to achieve 
consistent effects on blood pressure (BP) or other BP-raising 
mechanisms such as sodium reabsorption or sympathetic activ-
ity (SA). Consequently, the association between hyperinsulinemia 
and hypertension remains somewhat controversial. Some inves-
tigators believe that insulin resistance and hyperinsulinemia may 
only minimally contribute to the relationship between obesity and 
hypertension [22, 42].

Sympathetic Nervous System: Peripheral catecholamine levels 
or SA are not always elevated in obese compared to non-obese 
subjects; however, regional organ-specific SA in muscle and kid-
neys is elevated. The regionally elevated SA in obese subjects may, 
in part, explain the increased incidence of  hypertension, arrhyth-
mias, and angina pectoris that characterize obesity-hypertension 
[15, 28].

Dogs made obese by overfeeding demonstrate activated renal 
sympathetic nerve traffic and increased BP. Renal denervation in 
these animals attenuates sodium retention and prevents the devel-
opment of  hypertension. Increased SA in the kidneys of  obese 
patients has been found in several studies, and hyperleptinemia 
appears to be the most important mechanism that triggers the 
increase in SA in these subjects [6].

Vascular and Renal Nitric Oxide and hypertension

Nitric oxide (NO) is an endogenously produced, freely diffusible 
gas with a half-life of  several seconds. NO functions as an en-
dogenous intracellular and intercellular messenger that is involved 
in many pathophysiological responses, especially regional blood 
flow regulation and sodium (Na+) per water excretion. Cardiovas-
cular and renal health also depends on the pleiotropic effects of  
NO [9, 22].

Studies in humans indicate that essential hypertension may be as-
sociated with a decrease in nitric oxide generation. Experiments in 
animal models, however, suggest that production of  nitric oxide 
by these animals may be reduced, unimpaired or even increased, 
depending on the model of  hypertension. Thus, it has been hy-

Figure 4. Sensory systems providing input to the central nervous system and the pathways of  sympathetic nerve-mediated 
renal functional responses.
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pothesized that in relation to nitric oxide there may be two forms 
of  hypertension [7, 28]. In one type, increased vasoconstrictor 
activity (which may be caused by different factors) leads to an in-
crease in nitric oxide generation as a compensatory mechanism; in 
this situation there may be normal or increased sodium excretion 
since nitric oxide plays a role in facilitating sodium handling. The 
other type may depend on a deficiency in nitric oxide generation 
in the vessel wall, which would be accompanied by impaired renal 
sodium handling. Thus, the first form of  hypertension would be 
associated with abnormally high vasoconstrictor activity, whereas 
in the second form normal levels of  vasoconstrictors will in ef-
fect behave as excessive owing to the lack of  counteracting nitric 
oxide-dependent vasodilator tone  [22, 33].

Emerging Aspects Of  Hypertension

Recently, it has been suggested that the inflammation in the brain-
stem may underlie neurogenic hemodynamic disorder [48]. Sub-
stances with a potential anti-inflammatory, antioxidant and en-
dothelium-protecting action in the central nervous system, such 
as melatonin, might become important players in the therapeutic 
targeting. The antihypertensive effect of  melatonin was demon-
strated in experimental and clinical hypertension. This neuro-
hormon has been shown to lower inflammation and free radical 
burden, correct endothelial dysfunction, to protect organs and to 
shift the balance between the sympathetic and parasympathetic 
system in favor of  the parasympathetic system. In addition, so-
dium/water excretion, adrenal steroids and protein-derived pep-
tides are other factors controlling hypertension [48]. There are 
many efforts targeting the understanding of  the pathophysiologic 
mechanisms of  hypertension and many new strategies are being 
investigated in order to manage hypertension. In this view, modu-
lation epigenetic regulation of  genes involved in BP homeostasis, 
device based interventions, including baroreceptor activation and 
renal denervation therapy are some emerging therapies for hyper-
tension [49].

Conclusion

High blood pressure is a major health concern worldwide and 
will continue to grow in importance as the population ages and 
developing nations become more urban and industrialized.  It is 
imperative to enhance both clinician and public awareness of  the 
consequences and of  the readily available treatments for hyper-
tension. Also, major education campaigns promoting healthy life-
styles need to be initiated, as these may aid in the primary preven-
tion of  hypertension.
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