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A phase change is the transformation of  a material from one 
phase or state of  matter to another. It includes phase changes 
between solid, liquid and gaseous states of  matter. Phase change 
problems, including melting and solidification, are very important
in many engineering applications such as food freezing, metal 
processing, and solidification of  castings. Numerical modeling 
has been one of  important tools to study physical phenomena 
in phase change problems at various scales. Initially, the material 
phase change problems were studied at the macroscale, and 
the thermal diffusion equation was usually employed as one of  
governing equations:
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where T is the temperature field and α is the thermal diffusivity.

The fixed grid methods [1-5], including both finite element 
methods (FEM) and finite difference methods (FDM), were 
employed to model and simulate material phase change problems
by solving the governing equations numerically. The major 
advantage of  fixed grid methods is that the methods can handle 
multi-dimensional problems efficiently. However, the fixed grid 
methods may sometimes be unstable when the phase interface 
moves at a distance larger than the spatial increment in one 
time step. The extended finite element method (XFEM) [6, 7]
has been used to overcome the above issue raised in most fixed 
grid methods. The basic idea is to explicitly track the phase 
interface and to construct enriched elements depending on the 
interface position while keeping the fixed meshes. Therefore, the 
approximation can present the phase interface and the associated
discontinuity in the temperature gradient within an element. 
Another alternative solution is to employ the variable grid 
methods [8, 9]. In the variable grid methods, either the space or 
time domain is divided into equal intervals, and the corresponding 

grid interval in the other domain is determined.

To study material change problems at the microscale, a thermal
wave model [10] shall be employed:
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where τ is the relaxation time. Li [11] compared the solutions of  
the thermal diffusion equation with those of  the thermal wave 
equation for a heat transfer problem. It showed that the latter 
would clearly elucidate non-Fourier heat conduction behavior 
when the relaxation time of  material could not be neglected at the 
microscale. Various approaches have been proposed to determine 
the relaxation time for the heat wave model due to phonon 
transport [12] or electronic transport [13]. Another approach 
could be using molecular dynamics (MD) simulation to calculate 
the relaxation time. Indeed, other thermal properties, including 
thermal diffusivity and latent heat, can also be determined 
via MD simulations. Those parameters can be passed to the 
governing equations of  the material phase change problems at 
the microscale. This is socalled hierarchical multiscale modeling.

MD is also a powerful tool to understand the mechanism of  
material phase change at the nanoscale. In MD simulation, classical 
Lagrangian mechanics is employed. The atoms are modeled as 
particles, and the interactions between atoms are described by the
empirical potential functions. Newtonian equations of  motion 
are solved to update atomic velocities and positions. Rose and 
Berry [14] performed MD simulations of  the melting process of  
a KCl cluster composed of  64 ions. Luo et al. [15] conducted 
MD simulations to investigate nonequilibrium melting and 
crystallization of  the Lennard-Jones system, and evaluated serval 
interfacial kinematic parameters.
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We studied ice melting [16, 17] as an example to demonstrate 
numerical modeling and simulation of  material phase change 
problems at different scales as discussed in the above. We first 
conducted MD simulations using SPC/E ice model, and found 
that the ice melting speed was very fast at the beginning and then 
decreased with time at the nanoscale. To simulate the ice melting 
at the microscale, the heat wave equation and the equation for 
releasing latent heat of  transformation at the phase interface were 
solved via FEM. The relaxation time of  ice in the thermal wave 
model was calculated from MD simulations and compared well 
with the experimental data [18]. At the macroscale, the thermal 
diffusion equation was employed to investigate ice melting speed.

Figure 1 shows ice melting speeds at various scales. It should be 
noted that not only various length scales but also the corresponding
time scales were considered. In addition, the dot lines represent 
the predicted ice melting speeds at the nano and micro length 
scales with larger time scales. Figure 1 clearly shows that melting 
speed at the nano length/time scale is much faster than those at 
the microscale and macroscale. Furthermore, ice melting speeds 
decrease with time evolution. If  only considering various length 
scales, the ice melting speed at the nano length scale decreases 
with time. At the micro time scale, it is slower than the melting 
speed at the micro length scale. Similarly, at the macro time scale, 
the melting speeds at the micro and nano length scales are slower 
than the one at the macro length scale. The results illustrate that 
the ice melting speed is scale dependent.

Another approach to study material phase change problems at the 
microscale is the phase-field method, which was first introduced 
by Fix [19] and Langer [20], and has been experienced a growing 
interest in solidification and other areas. Caginalp and Fife 
[21] introduced surface tension and other important interfacial 
parameters in the phase-field model. They found that the classical 
phase change problems (sharp interface problems) could be 
recovered mathematically by using the phase-field approach. 
It could smooth the solution over a thin interface with a finite 
interfacial thickness, in which effects of  surface tension and 
supercooling were included. In addition, Penrose and Fife [22] 
derived a thermodynamically consistent phase-field model. Wang 
and co-workers [23] presented this model based on the first and 
second thermal dynamics laws. An overview of  the phase-field 

method for material phase change problems can be found in 
Boettinger's article [24].

Here, we propose another hierarchical multiscale modeling 
to enhance the phase-field method in simulating material 
solidification problems. In this multiscale modeling, MD 
simulations are conducted at the nanoscale to investigation 
nucleation. The nucleus shape then is passed to the phase-
field method as the input to initiate the microscale simulation. 
This multiscale modeling and simulation was demonstrated by 
studying copper crystallization. The embedded-atom method 
(EAM) potential was employed to conduct MD simulation of  
copper crystallization at the supercooling temperature of  850K. 
The system contained 4000 atoms subjected to periodic boundary 
conditions. It was found that crystallization occurred at 20ps with 
a few randomly located nuclei. One of  them grew faster and 
became a cluster at 30ps, as shown in Figure 2. This largest cluster 
was mapped to a two-dimensional phase-field domain as the initial
solid state configuration to initiate the microscale simulation. 
It shall be noted that the thermal properties and interfacial 
parameters were also obtained from MD simulations and were 
passed to the phase-field method. Those parameters include 
thermal diffusion coefficient, latent heat, relaxation time, interfacial 
thickness, interfacial energy and the anisotropy coefficients. The 
nucleus growth configurations from both phase-field method and 
MD simulation at 50ps are shown in Figure 3. The difference 
between two configurations are because MD simulations were 
three-dimensional while the phase-field simulation was two-
dimensional. In addition, the periodic boundary conditions were 
used in MD simulations but not in the phase-field simulation.

In this paper, we discussed numerical modeling and simulation 
of  material phase change problems at macroscale, microscale and
nanoscale. Two hierarchical multiscale models were proposed. 
In the first model, the parameters in the thermal wave equation 
at the microscale were calculated via MD simulations. In the 
second one, MD simulation provided the nucleus configuration 
to initiate the phase-field simulation at the microscale. Studies of  
Ice melting and copper crystallization have been carried out to 
demonstrate the proposed multiscale models. They can be viewed 
as the frameworks to model and simulate material phase change 
problems.

Figure 1. Ice melting speeds at various scales.
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Figure 2. Solid cooper atoms during crystallization at 30ps.

Figure 3. Phase - field simulation of  nucleus growth compared with MD simulation.
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